Shared posts

13 Sep 17:45

Evolution: The Movie, courtesy of a really big Petri dish

by John Timmer

Enlarge / Evolution in action, as distinct lineages leave traces while they expand into new habitats. (credit: Harvard Medical School)

For most species we see, evolution is a slow process, requiring generations to show its effects. But the species we can't see—bacteria and other microbes—can go through dozens of generations in a single day. For them, evolution can be a rapid process, as antibiotic resistance has made us painfully aware.

That's why researchers often use bacteria to study evolutionary processes. In perhaps the most famous experiment, a single lab has now sent E. coli through tens of thousands of generations of competing with each other for limited resources and has tracked the resulting changes on the DNA level.

But evolution isn't always a constant competition of all against all, as takes place in these experiments. Instead, you get migrations and exploitation of new habitats, allowing rare founders to spawn entire populations. Now, a research team has figured out a nice way to study founder dynamics in a bacterial culture and has consequently allowed the branching of evolutionary lineages to be watched like a movie.

Read 10 remaining paragraphs | Comments

12 Sep 04:00

Earth Temperature Timeline

[After setting your car on fire] Listen, your car's temperature has changed before.
07 Sep 14:35

Saturday Morning Breakfast Cereal - Fossils

by tech@thehiveworks.com


Hovertext:
I'm just saying, it's what WE would do.

New comic!
Today's News:
02 Sep 16:45

Bizarre ant colony discovered in an abandoned Polish nuclear weapons bunker

by Annalee Newitz
  • Taken in 2014, this picture shows the partly blocked entrance to the Soviet-era bunker system in Poland. In the background, pine-spruce forest overgrowing the hillock was built to camouflage the structure.
    Wojciech Stephan

For the past several years, a group of researchers has been observing a seemingly impossible wood ant colony living in an abandoned nuclear weapons bunker in Templewo, Poland, near the German border. Completely isolated from the outside world, these members of the species Formica polyctena have created an ant society unlike anything we've seen before.

The Soviets built the bunker during the Cold War to store nuclear weapons, sinking it below ground and planting trees on top as camouflage. Eventually a massive colony of wood ants took up residence in the soil over the bunker. There was just one problem: the ants built their nest directly over a vertical ventilation pipe. When the metal covering on the pipe finally rusted away, it left a dangerous, open hole. Every year when the nest expands, thousands of worker ants fall down the pipe and cannot climb back out. The survivors have nevertheless carried on for years underground, building a nest from soil and maintaining it in typical wood ant fashion. Except, of course, that this situation is far from normal.

Polish Academy of Sciences zoologist Wojciech Czechowski and his colleagues discovered the nest after a group of other zoologists found that bats were living in the bunker. Though it was technically not legal to go inside, the bat researchers figured out a way to squeeze into the small, confined space and observe the animals inside. Czechowski's team followed suit when they heard that the place was swarming with ants. What they found, over two seasons of observation, was a group of almost a million worker ants whose lives are so strange that they hesitate to call them a "colony" in the observations they just published in The Journal of Hymenoptera. Because conditions in the bunker are so harsh, constantly cold, and mostly barren, the ants seem to live in a state of near-starvation. They produce no queens, no males, and no offspring. The massive group tending the nest is entirely composed of non-reproductive female workers, supplemented every year by a new rain of unfortunate ants falling down the ventilation shaft.

Read 6 remaining paragraphs | Comments

15 Aug 04:00

Horses

This car has 240% of a horse's decision-making ability and produces only 30% as much poop.
21 Jul 17:02

Facebook tests full-scale solar-powered Internet drone

by Sean Gallagher

Facebook's Aquila drone takes off from its launch dolly. (credit: Facebook)

Facebook's Connectivity Lab announced today that the company has for the first time test-flown a full-scale version of Aquila, the solar-powered high-altitude drone that Facebook hopes to use to deliver Internet connectivity to the remotest populated corners of the Earth. The test flight took place June 28 but was only announced today by Facebook.

The low-altitude test flight was originally intended only as a 30-minute “functional check” flight. "It was so successful that we ended up flying Aquila for more than 90 minutes—three times longer than originally planned," wrote Jay Parikh, Facebook's vice president of infrastructure engineering, in a post to Facebook's Newsroom blog published today.

The initial test goals were simply to ensure that the huge Aquila drone—with a wingspan comparable to a Boeing 737 and mass more like an automobile—could even get airborne. To minimize its weight, Aquila doesn't have "traditional landing gear," according to Martin Gomez and Andy Cox of the Aquila team. "We attached the airplane to a dolly structure using four straps, then accelerated the dolly to takeoff speed. Once the autopilot sensed that the plane had reached the right speed, the straps were cut simultaneously by pyrotechnic cable cutters known as 'squibs.'"

Read 7 remaining paragraphs | Comments

21 Jun 00:00

Sun Bug

by xkcd

Sun Bug

How many fireflies would it take to match the brightness of the Sun?

Luke Doty

Not that many! I mean, it's definitely one of those gigantic numbers with lots of zeroes, but in the grand scheme of things, there aren't as many zeroes as you might expect.

Our first question: Where does firefly light even come from?

Fireflies may look like they're full of glow-in-the-dark goo, but the light they give off actually comes from a thin layer on their surface.[1]You can see some diagrams of the organs here and here. Lots of insects have glowing surface patches, and some of those patches have been studied carefully to calculate their brightness. A 1928 paper on beetles called "headlight bugs"[2]Such a great name. found that their glowing patches, which were a little over a square millimeter in area, emitted about 0.0006 lumens of light. Fireflies have luminous organs (bright patches) that are about the same size as those of headlight bugs,[3]See this paper on some common American fireflies. and their organs tend to have a similar peak brightness per area, so this figure is a good guess for the brightness of a firefly's lantern.

Firefly lights aren't "always-on." They blink on and off, with patterns that vary from species to species and situation to situation. These flashes carry information, some of which you can decode using this delightful chart.[4]You can also use LEDs to mess with firefly patterns, which feels strangely invasive.

To get the brightest light, let's assume we're using a species with a mostly-on duty cycle—like a headlight bug. How does its 0.0006-lumen light output compare to the Sun?

The Sun's brightness is \( 3.8\times10^{28} \) lumens, so by simple division, it would take \( 3\times10^{31} \) of those fireflies to emit the same amount of light. That's a surprisingly small number; adult fireflies weigh about 20 milligrams, which means \( 3\times10^{31} \) fireflies would only weigh about a third as much as Jupiter and 1/3000th as much as the Sun.

In other words, per pound, fireflies are brighter than the Sun. Even though bioluminescence is millions of times less efficient than the Sun's fusion-powered glow, the Sun can't afford to be as bright because it has to last billions of times longer.[5]If you like Fermi problems—and silly equations—there's an interesting route you can take to this answer without doing any research on fireflies or the Sun at all. Instead, you can just plug this equation into Wolfram|Alpha: (5 billion years / (4 hours/day * 3 months)) / (1% * (speed of light)^2 / (3200 calories/pound)).

Let's walk through it: The first half—the numerator—is a guess for the ratio between how long the Sun has to keep glowing compared to how long a firefly does. I took a wild guess that fireflies have to light up for a few hours each night for one summer, while the Sun has to last another five billion years. The second half—the denominator—is a guess as to the ratio between the stored energy in a pound of firefly vs a pound of star. Nuclear fusion converts about 1% of the input matter to energy, so from E=mc2, the stored energy is c2 kg/kg, whereas animal matter (say, butter) is about 3,200 food calories per pound. The result should tell us the ratio between a firefly's brightness per pound and the Sun's. And the answer we get says that the fireflies are a few thousand times brighter—which is roughly what we got from working through it the other way!

It's true that we got lucky with some of our guesses, but since we made errors in both directions, they tended to cancel out. This kind of thing works more often than it seems like it should!

But wait! A mass of fireflies that big would run into problems. Besides the obvious problems with gathering that many animals in one place, the fireflies would block each others' light. The inner fireflies would be hidden behind the outer ones, and the total brightness would be limited.[6]But the light from the core fireflies wouldn't just vanish. After bouncing around a few times, it would be absorbed by neighboring fireflies, which would get warmer. This is sort of like how radiation makes its way out of the Sun's core—but in the case of the fireflies, they'd die from the heat before the process got very far.

Since the only light that matters is the light at the surface, we could imagine arranging the fireflies in a hollow sphere, with their lanterns pointing outward. Or, to make thing simpler, we could imagine a single giant firefly. How big would it need to be?

Since we know our firefly will need to give off about \( 3\times10^{31} \) times as much light as a normal firefly, it will need a glowing patch \( 3\times10^{31} \) times larger. Since surface area is proportional to length squared, our firefly will have a body length \( \sqrt{3\times10^{31}}=5\times10^{15} \) times longer than a normal firefly, which would make it about the size of the Solar System.

Since mass is proportional to length cubed, our firefly would weigh \( \left( 3\times10^{31}\right)^{\tfrac{3}{2}}=1.6\times10^{47} \) times as much as a normal firefly, which works out to about half as much as the entire Milky Way galaxy.

Such a firefly would immediately collapse under its own weight and become a black hole. In fact, given the distribution of galaxies in our universe, there's an upper limit to how large black holes can grow, and this firefly would be bigger than that limit. That means our firefly would become the largest black hole in the universe. It would give off a lot of light as it devoured our galaxy, and then, eventually, it would give off none at all.

Black holes last a long time, but they eventually evaporate through Hawking radiation. When the black hole era of our universe comes to an end, black holes will evaporate one by one, with the smallest evaporating faster. Since our firefly's black hole would be the largest one in the universe, it would be the last to evaporate—a final outpost of irregularity in a universe fading toward heat death.

We should probably add that to the identification chart, just in case.

15 Jul 04:00

xkcd Phone 4

The SpaceX system carefully guides falling phones down to the surface, a process which the phones increasingly often survive without exploding.
14 Jul 12:49

Make Mars great again

by PIDJIN.NET


Don't miss our next comic:

The post Make Mars great again appeared first on Fredo and Pidjin. The Webcomic..

01 Jul 18:55

Software faults raise questions about the validity of brain studies

by John Timmer

(credit: Walter Reed National Military Medical Center)

It's not an exaggeration to say that functional MRI has revolutionized the field of neuroscience. Neuroscientists use MRI machines to pick up changes in blood flow that occur when different areas of the brain become more or less active. This allows them to noninvasively figure out which areas of the brain get used when performing different tasks, from playing economic games to reading words.

But the approach and its users have had their share of critics, including some who worry about over-hyped claims about our ability to read minds. Others point out that improper analysis of fMRI data can produce misleading results, such as finding areas of brain activity in a dead salmon. While that was the result of poor statistical techniques, a new study in PNAS suggests that the problem runs significantly deeper, with some of the basic algorithms involved in fMRI analysis producing false positive "signals" with an alarming frequency.

The principle behind fMRI is pretty simple: neural activity takes energy, which then has to be replenished. This means increased blood flow to areas that have been recently active. That blood flow can be picked up using a high-resolution MRI machine, allowing researchers to identify structures in the brain that become active when certain tasks are performed.

Read 10 remaining paragraphs | Comments

29 Jun 17:55

TweetDeck, HipChat and Gmail Added to Franz Messaging Client

by Joey-Elijah Sneddon

franzThe Franz desktop messaging app has received a big update, adding a host of popular web services to its roster.

This post, TweetDeck, HipChat and Gmail Added to Franz Messaging Client, was written by Joey-Elijah Sneddon and first appeared on OMG! Ubuntu!.

05 May 17:55

First autonomous robot to operate on soft tissue outdoes human surgeons

by Beth Mole

(credit: Axel Krieger])

Step aside, Ben Carson. The once lauded ability to perform delicate operations with gifted hands may soon be replaced with the consistent precision of an autonomous robot. And—bonus—robots don’t get sleepy.

In a world’s first, researchers report using an autonomous robot to perform surgical operations on soft tissue and in living pigs, where the adroit droid stitched up broken bowels. The researchers published the robotic reveal in the journal Science Translational Medicine, and they noted the new machinery surpassed the consistency and precision of expert surgeons, laparoscopy, and robot-assisted (non-autonomous robotic) surgery.

The authors, led by Peter Kim at Children’s National Health System in Washington, DC, emphasized this feat is not intended to be a step toward completely replacing surgeons. Rather, they want the technology to provide new tools that help every operation go smoothly. “By having a tool like this and by making the procedures more intelligent, we can ensure better outcomes for patients,” Kim said.

Read 8 remaining paragraphs | Comments

28 Jan 16:37

A robot that runs and swims like a salamander | Auke Ijspeert

by contact@ted.com (TED Conferences LLC)
Roboticist Auke Ijspeert designs biorobots, machines modeled after real animals that are capable of handling complex terrain and would appear at home in the pages of a sci-fi novel. The process of creating these robots leads to better automata that can be used for fieldwork, service, and search and rescue. But these robots don't just mimic the natural world -- they help us understand our own biology better, unlocking previously unknown secrets of the spinal cord.
28 Jan 18:07

Social carnivores aren’t smarter—it’s all in the relative brain size

by John Timmer

A tiger doing some problem-solving. (credit: Greg Stricker/Sarah Benson-Amram)

Animal intelligence varies widely. Some have cognitive abilities that were once thought to be limited to humans, while others seem to act purely on instinct. It's not simply a matter of having large brains; birds don't have especially large ones, but they can master complicated problems or learn the solution from others in their social network.

So what can explain animal intelligence? One general trend that has been noted is that the size of the brain relative to the rest of the body seems to matter. Birds may not have big brains on an absolute scale, but their brains are relatively large compared to their body mass. Others have also noted that lots of the animals we consider smart seem to operate in social groups. These include birds, primates, elephants, and dolphins.

A new study looks at problem-solving across a wide range of carnivores and finds mixed support for these ideas. Belonging to a social group didn't seem to make a difference, but having a large brain to body ratio did. The surprising (or perhaps worrying) thing is that the brain to body ratio was high in some of the biggest carnivores tested: bears.

Read 9 remaining paragraphs | Comments

09 Feb 17:20

The childhood of a coder: Can’t. Stop. Watching.

by CommitStrip

Strip-Defragmentation-Windows-95-(650-final)(english)

09 Feb 00:00

Fire From Moonlight

by xkcd

Fire From Moonlight

Can you use a magnifying glass and moonlight to light a fire?

—Rogier Spoor

At first, this sounds like a pretty easy question.

A magnifying glass concentrates light on a small spot. As many mischevious kids can tell you, a magnifying glass as small as a square inch in size can collect enough light to start a fire. A little Googling will tell you that the Sun is 400,000 times brighter than the Moon, so all we need is a 400,000-square-inch magnifying glass. Right?

Wrong. Here's the real answer: You can't start a fire with moonlight[1]Pretty sure this is a Bon Jovi song. no matter how big your magnifying glass is. The reason is kind of subtle. It involves a lot of arguments that sound wrong but aren't, and generally takes you down a rabbit hole of optics.

First, here's a general rule of thumb: You can't use lenses and mirrors to make something hotter than the surface of the light source itself. In other words, you can't use sunlight to make something hotter than the surface of the Sun.

There are lots of ways to show why this is true using optics, but a simpler—if perhaps less satisfying—argument comes from thermodynamics:

Lenses and mirrors work for free; they don't take any energy to operate.[2]And, more specifically, everything they do is fully reversible—which means you can add them in without increasing the entropy of the system. If you could use lenses and mirrors to make heat flow from the Sun to a spot on the ground that's hotter than the Sun, you'd be making heat flow from a colder place to a hotter place without expending energy. The second law of thermodynamics says you can't do that. If you could, you could make a perpetual motion machine.

The Sun is about 5,000°C, so our rule says you can't focus sunlight with lenses and mirrors to get something any hotter than 5,000°C. The Moon's sunlit surface is a little over 100°C, so you can't focus moonlight to make something hotter than about 100°C. That's too cold to set most things on fire.

"But wait," you might say. "The Moon's light isn't like the Sun's! The Sun is a blackbody—its light output is related to its high temperature. The Moon shines with reflected sunlight, which has a "temperature" of thousands of degrees—that argument doesn't work!"

It turns out it does work, for reasons we'll get to later. But first, hang on—is that rule even correct for the Sun? Sure, the thermodynamics argument seems hard to argue with,[3]Because it's correct. but to someone with a physics background who's used to thinking of energy flow, it may seem hard to swallow. Why can't you concentrate lots of sunlight onto a point to make it hot? Lenses can concentrate light down to a tiny point, right? Why can't you just concentrate more and more of the Sun's energy down onto the same point? With over 1026 watts available, you should be able to get a point as hot as you want, right?

Except lenses don't concentrate light down onto a point—not unless the light source is also a point. They concentrate light down onto an area—a tiny image of the Sun.[4]Or a big one! This difference turns out to be important. To see why, let's look at an example:

This lens directs all the light from point A to point C. If the lens were to concentrate light from the Sun down to a point, it would need to direct all the light from point B to point C, too:

But now we have a problem. What happens if light goes back from point C toward the lens? Optical systems are reversible, so the light should be able to go back to where it came from—but how does the lens know whether the light came from B or to A?

In general, there's no way to "overlay" light beams on each other, because the whole system has to be reversible. This keeps you from squeezing more light in from a given direction, which puts a limit on how much light you can direct from a source to a target.

Maybe you can't overlay light rays, but can't you, you know, sort of smoosh them closer together, so you can fit more of them side-by-side? Then you could gather lots of smooshed beams and aim them at a target from slightly different angles.

Nope, you can't do this.[5]We already know this, of course, since earlier we said that it would let you violate the second law of thermodynamics.

It turns out that any optical system follows a law called conservation of étendue. This law says that if you have light coming into a system from a bunch of different angles and over a large "input" area, then the input area times the input angle[6]Note to nitpickers: In 3D systems, this is technically the solid angle, the 2D equivalent of the regular angle, but whatever. equals the output area times the output angle. If your light is concentrated to a smaller output area, then it must be "spread out" over a larger output angle.

In other words, you can't smoosh light beams together without also making them less parallel, which means you can't aim them at a faraway spot.

There's another way to think about this property of lenses: They only make light sources take up more of the sky; they can't make the light from any single spot brighter,[7]A popular demonstration of this: Try holding up a magnifying glass to a wall. The magnifying glass collects light from many parts of the wall and sends them to your eye, but it doesn't make the wall look brighter. because it can be shown[8]This is left as an exercise for the reader. that making the light from a given direction brighter would violate the rules of étendue.[9]My résumé says étendue is my forté. In other words, all a lens system can do is make every line of sight end on the surface of a light source, which is equivalent to making the light source surround the target.

If you're "surrounded" by the Sun's surface material, then you're effectively floating within the Sun, and will quickly reach the temperature of your surroundings.[10](Very hot)

If you're surrounded by the bright surface of the Moon, what temperature will you reach? Well, rocks on the Moon's surface are nearly surrounded by the surface of the Moon, and they reach the temperature of the surface of the Moon (since they are the surface of the Moon.) So a lens system focusing moonlight can't really make something hotter than a well-placed rock sitting on the Moon's surface.

Which gives us one last way to prove that you can't start a fire with moonlight: Buzz Aldrin is still alive.

31 Jan 15:35

Saturday Morning Breakfast Cereal - Human Testing

by admin@smbc-comics.com

Hovertext: Anyone wanna teach an ethics class called And Why is *This* SMBC Wrong?


New comic!
Today's News:
27 Jan 16:24

Songbirds recognize songs the way humans recognize vowels

by Cathleen O'Grady

The expression of a Faroese starling who's listened to too much vocoder. (credit: flickr user: Arne List)

Humans are obviously pretty special when it comes to language. One of our cleverest tricks is the ability to process the sounds of spoken language at high speed—even more remarkable when you consider just how variable these sounds are. People have very different voices and very differently shaped throats and mouths, which all affect the sound waves that come out of them. And yet we have very little trouble communicating with speech.

There are many ways to try to figure out how this wizardry evolved, but one particularly useful source of information is birds. Their evolutionary relationship to humans goes pretty far back on the family tree, so anything unusual we have in common with them—like vocal learning—is unlikely to be because of our shared genetic history. Instead, it's more likely to result from similar evolutionary pressures causing both of us to hit on the similar solutions.

This is why a paper in this week's PNAS is so fascinating: it found that songbirds process sounds in a way that is very similar to humans. Like us, they're able to process how all the complex frequencies bound up in a single sound relate to one another. It’s very close to how humans process vowels.

Read 13 remaining paragraphs | Comments

26 Jan 14:46

Why the calorie is broken

by Ars Staff

(credit: Getty Images)

Calories consumed minus calories burned—it’s the simple formula for weight loss or gain, but dieters often find that it doesn’t work. Cynthia Graber and Nicola Twilley of Gastropod investigate for Mosaic science, where this story first appeared. It's republished here under a Creative Commons license.

“For me, a calorie is a unit of measurement that’s a real pain in the rear.”

Bo Nash is 38. He lives in Arlington, Texas, where he’s a technology director for a textbook publisher. He has a wife and child. And he’s 5’10” and 245 lbs—which means he is classed as obese.

Read 44 remaining paragraphs | Comments

22 Jan 05:00

Possible Undiscovered Planets

Superman lies near the bird/plane boundary over a range of distances, which explains the confusion.
21 Jan 19:48

Humans aren’t as cooperative as we thought, but they make up for it via stupidity

by John Timmer

(credit: New Line Cinema)

Lots of economic theory is based on the idea that humans will naturally seek to maximize their profits, but is that really the case? The field of behavioral economics involves a variety of attempts to find out. Things like game theory are used to create simplified economic systems in which people's behavior can be tracked.

A number of results indicate that some people do in fact behave as selfish, profit-maximizing individuals. But many others behave more altruistically, forging cooperative relationships in order to obtain greater benefits.

Or so it appeared. A group of Oxford researchers has now published a study in which they looked a bit more carefully at the people who were taking these tests, discovering that they'd be just as altruistic toward a computer. And that's probably because most of them simply don't understand the rules of the game they're playing.

Read 12 remaining paragraphs | Comments

11 Jan 16:35

How frustration can make us more creative | Tim Harford

by contact@ted.com (TED Conferences LLC)
Challenges and problems can derail your creative process ... or they can make you more creative than ever. In the surprising story behind the best-selling solo piano album of all time, Tim Harford may just convince you of the advantages of having to work with a little mess.
28 Dec 22:22

New videos prove crows can make complex tools that only humans have made before

by Annalee Newitz

Enlarge / New Caledonian crow uses a tool to grab insects deep inside a piece of wood.

Though we've long known that crows use tools to get food (and occasionally to amuse themselves), scientists have lacked definitive evidence. Which is why two intrepid researchers invented the crow tailcam, to record the inventiveness of these birds in the wild.

UK researchers Jolyon Troscianko and Christian Metz had observed crows making tools in the wild, as had some of their colleagues. But none of them ever caught this amazing feat of intelligence on video. A couple of years ago, Metz co-authored a paper about how crows make hooked tools, carefully fashioning them out of branches, in order to get at hard-to-reach grubs inside a piece of wood. But he was quick to point out that those feats of tool-making were done in captivity—where animals often develop a penchant for tool-making that they wouldn't have in the wild. In a paper out last week from Biology Letters, however, Troscianko and Metz describe how they finally caught wild crows making their hooked tools on video.

Not to put too fine a point on it, they put cameras on the crows' butts. More precisely, they used biodegradable rubber to attach tiny cameras to the birds' two strongest tail feathers, giving the researchers a below-the-belly view of the crow's activities. Because crows often lower their heads to foot level to eat and make tools, this was also an excellent vantage point to capture tool-making in action.

Read 6 remaining paragraphs | Comments

18 Dec 16:16

Refugees have the right to be protected | António Guterres

by contact@ted.com (TED Conferences LLC)
UN High Commissioner for Refugees António Guterres thinks that we can solve the global refugee crisis -- and he offers compelling, surprising reasons why we must try. In conversation with TED's Bruno Giussani, Guterres discusses the historical causes of the current crisis and outlines the mood of the European countries that are trying to screen, shelter and resettle hundreds of thousands of desperate families. Bigger picture: Guterres calls for a multilateral turn toward acceptance and respect -- to defy groups like ISIS's anti-refugee propaganda and recruiting machine.
14 Dec 05:00

Lunch

I'm trying to be healthier, so after I eat this brick of cheese, I'll have a spoonful of grease-soaked vegetables.
09 Dec 15:04

Google, NASA: Our quantum computer is 100 million times faster than normal PC

by Sebastian Anthony

(credit: D-Wave)

Two years ago Google and NASA went halfsies on a D-Wave quantum computer, mostly to find out whether there are actually any performance gains to be had when using quantum annealing instead of a conventional computer. Recently, Google and NASA received the latest D-Wave 2X quantum computer, which the company says has "over 1000 qubits."

At an event yesterday at the NASA Ames Research Center, where the D-Wave computer is kept, Google and NASA announced their latest findings—and for highly specialised workloads, quantum annealing does appear to offer a truly sensational performance boost. For an optimisation problem involving 945 binary variables, the D-Wave X2 is up to 100 million times faster (108) than the same problem running on a single-core classical (conventional) computer.

Google and NASA also compared the D-Wave X2's quantum annealing against Quantum Monte Carlo, an algorithm that emulates quantum tunnelling on a conventional computer. Again, a speed-up of up to 10was seen in some cases.

Read 4 remaining paragraphs | Comments

18 Nov 05:00

DNA

Researchers just found the gene responsible for mistakenly thinking we've found the gene for specific things. It's the region between the start and the end of every chromosome, plus a few segments in our mitochondria.
03 Nov 16:25

A boat carrying 500 refugees sunk at sea. The story of two survivors | Melissa Fleming

by contact@ted.com (TED Conferences LLC)
Aboard an overloaded ship carrying more than 500 refugees, a young woman becomes an unlikely hero. This single, powerful story, told by Melissa Fleming of the UN's refugee agency, gives a human face to the sheer numbers of human beings trying to escape to better lives ... as the refugee ships keep coming ...
15 Oct 16:02

Two nameless bodies washed up on the beach. Here are their stories | Anders Fjellberg

by contact@ted.com (TED Conferences LLC)
When two bodies wearing identical wetsuits washed ashore in Norway and the Netherlands, journalist Anders Fjellberg and photographer Tomm Christiansen started a search to answer the question: who were these people? What they found and reported in Norway’s “Dagbladet” is that everybody has a name, everybody has a story and everybody is someone.
15 Oct 12:30

The NSA sure breaks a lot of "unbreakable" crypto. This is probably how they do it.

by Cory Doctorow

bump-key

There have long been rumors, leaks, and statements about the NSA "breaking" crypto that is widely believed to be unbreakable, and over the years, there's been mounting evidence that in many cases, they can do just that. Now, Alex Halderman and Nadia Heninger, along with a dozen eminent cryptographers have presented a paper at the ACM Conference on Computer and Communications Security (a paper that won the ACM's prize for best paper at the conference) that advances a plausible theory as to what's going on. In some ways, it's very simple -- but it's also very, very dangerous, for all of us. (more…)