Shared posts

27 Mar 13:20

Power Water Networks

by kris de decker

Hydraulic accuDuring the second half of the nineteenth century, water motors were widely used in Europe and America. These small water turbines were connected to the tap and could power any machine that is now driven by electricity.

As we have seen in a previous article, operating motors with tap water was not very sustainable. Because of the low and irregular water pressure of the town mains, these motors used unacceptably high amounts of drinking water.

While the use of water motors in the US came to an end early in the twentieth century, the Europeans found a solution for the high water use of water motors and took hydraulic power transmission one step further.

They set up special "power water" networks, which distributed water under pressure for motive power purposes only, and switched to a much higher and more regular water pressure, made possible by the invention of the hydraulic accumulator.

Almost all these power water networks remained in service until the 1960s and 1970s. Hydraulic power transmission is very efficient compared to electricity when it is used to operate powerful but infrequently used machines, which can be distributed over a geographical area the size of a city.

A hydraulic accumulator. Picture: Les Chatfield.

 


"The use of water is a curiously neglected subject in the literature of engineering. As a romantic or popular facet of engineering, hydraulic power has never caught the public eye like the steam engine, the locomotive or even the internal combustion engine".

Ian McNeil, Hydraulic Power, 1972


The theoretical basis for hydraulic power transmission was laid in 1647 by French whizz-kid Blaise Pascal. By means of experiments, he discovered that water -- unlike air -- is virtually incompressible and transmits pressure equally in all directions.

The implications of the "hydrostatic paradox" were demonstrated in Pascal's "machine for multiplying forces", illustrated below. It consists of two upright cylinders, connected together by a pipe. The whole system is filled with water and sealed water-tight. One cylinder contains a small diameter plunger, while the other cylinder contains a plunger that has a cross-sectional area 100 times larger.

Hydraulic jack blaise pascalMachine for multiplying forces.

Pascal demonstrated that if a weight is placed on top of the small piston, it will be able to raise a weight placed on top of the larger piston that is 100 times heavier. Pascal's machine thus allowed forces to be multiplied -- in the example above, the  ratio of force output to force input is 100 to 1. In other words, you can produce an output force of 100 kg for an input force of only 1 kg.

A Machine for Multiplying Forces

Force multiplication was anything but new in the 1600s. More simple devices such as pulleys, gear trains, capstans, winches and treadwheels -- all variations on the 7,000 year old lever -- could also derive a high output force output from a small input force. For example, the Romans built cranes with a mechanical advantage of up to 70 to one, meaning that one man exerting a force of only 25 kg could raise a weight of 1.75 tonnes.

However, the hydraulic version of the lever has one outstanding advantage over earlier mechanisms: the friction loss is very small and independent of the mechanical advantage. Therefore, the possible multiplication ratio is almost infintely greater and both pistons may be a considerable distance apart -- up to about 25 km, as we shall see.


In hydraulics, friction loss is independent of the mechanical advantage, therefore the possibile force multiplication ratio is almost infinite


Pascal's barrel experimentIncreasing force multiplication could be done by either extending the proportion between the diameter of both plungers, or by applying greater power to the smaller piston. In common with the earlier mechanisms, what is gained in mechanical advantage is lost in velocity ratio.

If a small hydraulic force is converted into a larger force, its speed of operation will be reduced in exactly the inverse proportion, because the distance traversed increases in the same proportion as the force. For example, a person pressing down the small piston 10 centimetres would move the other piston up only 1/100th of that distance.

Consequently, in a closed system, the heavier weight could be lifted only over a very limited distance, depending on the length of the plunger. However, this limit is removed when more water is added to the system and the smaller piston, instead of coming down just once, makes a number of strokes -- in other words, when it functions as a pump. In this case, the larger piston will keep rising.

The Hydraulic Press

Pascal could only prove his point indirectly, as the available materials at the time were not strong enough to withstand the pressure. It would take another century and a half before hydraulic force multiplication was put into practice. Its first use was not a lifting device, but rather the opposite: the hydraulic press, which generates a compressive force.

The conventional screw press of the time, little developed since the Romans had used it for pressing olives and grapes, required a great effort to operate, had large frictional energy loss (+80%), and could not have exerted more than 25 tonnes load. (The screw, which converts rotational motion into linear motion, is basically an inclined plane wrapped around a cylinder).

Screw press versus hydraulic pressLeft: The screw press. Picture credit: Bruce K. Satterfield. Right: The hydraulic press.

The hydraulic press was invented in 1796 by English locksmith and carpenter Joseph Bramah. It was entirely based on the theoretical work of Pascal. Bramah's hydraulic press, which was driven by a hand-operated pump, brought a large increase in the load that could be exerted by a human.

With the available materials at the time, Bramah achieved an overall ratio of 1,000 to 1, which means that an effective load of 60 tonnes on the lifting piston could be balanced by a mere 60 kg on the pump handle. The efficiency of the hydraulic press was over 90%.

Harbours and Dockyards

In spite of its eminent suitability for crane operation, hydraulics made little progress in this field during the first half of the nineteenth century. This was largely due to the problem of reliably and efficiently translating the linear motion of a ram to rotary motion of the crane barrel or drum. During the first half of the nineteenth century, cargo handling in harbours, dockyards and railway yards was still done by means of human powered cranes, but the need for taller and stronger cranes was great.

Starting in the 1830s, iron began to be used as a material for ship building, with a parallel growth in the dimensions of ships. Conventional lifting systems were no longer adequate. In most countries, the solution was found in the steam powered crane, which appeared in the 1850s. However, in harbours and dockyards in Britain, a worthy alternative appeared: the water powered crane.


During the first half of the nineteenth century, cargo handling in harbours, dockyards and railway yards was still done by means of human powered cranes


Hydraulic craneBritish engineer William Armstrong started designing and operating powerful hydraulic cranes in the 1840s. Being fully aware that hydraulics was best adapted for giving a slow, steady motion, Armstrong deviced a method of lifting the load at one stroke of a ram or piston, multiplying the motion sufficiently by means of pulleys.

However, his efforts were complicated by the low and irregular pressure of the town mains, which was the power source for these machines. The maximum power output of a water powered machine is determined by water pressure and water flow. In the town mains, water pressure was (and often still is) supplied by a water tower. Because the practical height of a water tower is limited, so is the water pressure. A 50 m (165 ft.) tall water tower can produce a water pressure of 70 pound-per-square-inch (psi).

Consequently, the only way to further increase the power output of a crane running on water from the town mains is to increase the water flow. However, this raises potable water consumption and increases the size and costs of pipes, valves, cylinders, and other parts of the system. Moreover, if there is a higher than average demand for potable water from other users, the water level in a water tower will fall, and so will the water pressure and the power output of the machine.

The Hydraulic Accumulator

In 1851, Armstrong came up with an alternative solution that solved these issues: the hydraulic accumulator. Although much more compact than a water tower, it could produce a regular water pressure of 700 psi or higher -- at least 10 times the water pressure in the town mains. This allowed to produce an order of magnitude more power without raising water consumption or increasing the size of system components.

Armstrong's hydraulic accumulator was a contraption in which a ram or piston exerted pressure on the water in a vertical cylinder. The piston was loaded by dead weight ballast, which generally took on the form of a cylindrical ballast container surrounding the central cylinder (image below, on the left). The container was filled with crushed rock, scrap iron or other ballast material.

Hydraulic accumulatorsHydarulic Accumulator in Bristol Harbour. Wikipedia Commons.   Hydraulic Accumulator, Walsh Bay, Sydney. Source: NSW HSC Online

For a water pressure of 700 psi the ballast was about 100 tonnes, acting on a ram of about 45 cm in diameter with a vertical stroke of 6 to 7 meters. Another type of accumulator utilised a rectangular platen to support a brickwork ballast (image above, on the right) or steel slabs. Hydraulic accumulators could be set up outdoors, or housed in a purpose designed building.


In comparison with a water tower, a hydraulic accumulator could deliver ten times more power, and maintain an even pressure all over the network


Fielding and platt hydraulic accumulatorThe workings of the hydraulic accumulator are somewhat similar to those of a water tower. The central cylinder has a water inlet and outlet at the bottom. Water from the docks could be pumped in through the inlet by a steam powered pump, raising the piston, while it could be pushed out through the outlet into the mains for distribution, lowering the piston.

Energy was stored by upward movement of the ram and recovered upon its descent. The pumping rate of the steam engine was regulated in function of the water level in the accumulator, either automatically via mechanical linkages or via the aid of a human being.

Contrary to a water tower, however, the accumulator could maintain an even pressure all over the system regardless of the volume of water in the cylinder, because it's the weight of the ballast and not the weight of the water that creates the pressure -- in other words, the hydraulic accumulator gives pressure by load instead of by elevation.

With a charging/discharging efficiency above 98%, and no self-discharge, the hydraulic accumulator was an extremely energy efficient device.

Water Powered Factory Machinery

The introduction of the hydraulic accumulator had two important effects. First, it greatly expanded the range of hydraulically operated machines. The water motors connected to the town mains were household devices and workshop tools. But Armstrong and other engineers adapted high pressure water to a variety of industrial applications that required great power such as forging, punching, stamping, flanging, shearing and riveting (the predecessor of welding).

Hydraulic riveting press via old engineeringHydraulically powered riveting machine.

In harbours, high pressure water not only operated cranes and hoisting machines handing cargo on docks and in warehouses, but also lock gates, swing bridges, boat lifts, and graving docks. At railway yards, hydraulic power transmission was used for freight handling and for moving railway cars (using hydraulic capstans), as well as for operating turntables, elevators and traversing mechanisms. All these applications of hydraulic power would have been impossible with the low and irregular pressure prevailing on the town mains.

To give an idea of the importance of hydraulic power, it suffice to look once more at the evolution of lifting devices. In 1586, a 344 ton obelisk was moved between squares in Rome. Domenic Fontana, master builder of the Vatican, raised the obelisk with the help of 40 capstans worked by 400 men and 75 horses. In 1878, John Dixon raised another obelisk -- Cleopatra's needle, weighing 209 tons -- using four hydraulic lifting jacks, worked by four men.

Power Water Networks

Secondly, the hydraulic accumulator made it possible to transmit power efficiently over large distances. For a 30 cm diameter pipeline, the pressure drop in water distribution amounts to about 10 psi per mile, a figure that is independent of water pressure. Thus, if you transmit water with a pressure of 70 psi over a distance of 7 miles (12 km), all energy is lost. But if you transmit water over the same distance with a pressure of 700 psi, a water pressure of 630 psi remains, which comes down to a transmission efficiency of 90%.

The high transmission efficiency of high-pressure water led to the construction of at least a dozen public power water networks with accumulator storage, half of them in Britain, in which centrally located steam engines pumped water into hydraulic accumulators that distributed high pressure water over a large geographical area. One or more accumulators would be installed at each hydraulic power station and others could be sited at strategic points along the supply main as sub-stations.


The idea of a truly hydraulic power network -- analogous to the electric grid that came a bit later -- was already outlined in a 1812 patent by Joseph Bramah, the inventor of the hydraulic press.


From the 1870s to the 1890s, hydraulic power networks were established in the leading industrial cities of Britain: Kingston upon Hull, London, Liverpool, Birmingham, Grimsby, Manchester and Glasgow. Dock and railway companies pioneered the technology, and remained the most important users for decades.

Hydraulic accumulator hydraulic crane and hydraulic telescopic liftIllustrations of a hydraulic accumulator, a hydraulic crane, and a hydraulic lift.

However, power water was also running manufacturing processes in factories, operating elevators in public, private and commercial buildings, and activating household devices and workshop tools. Anybody who was lucky enough to have a mains running through the street could connect to the public network. Power water consumption was metered, as it happens today with potable water and electricity.

The idea of a truly hydraulic power network -- analogous to the electric grid that came a bit later -- was already outlined in a 1812 patent by Joseph Bramah, the inventor of the hydraulic press. But Bramah, who also conceived the hydraulic accumulator and the hydraulic crane, was ahead of his time. It took another sixty years before his ideas were brought into practice by Armstrong and his contemporaries.

London Hydraulic Power Company

The most extensive hydraulic power network was built in London, operated by the "London Hydraulic Company". At the company's peak in 1917, five interconnected central power stations pumped high pressure water in about a dozen hydraulic accumulators and almost 300 km of supply mains, powering more than 8,000 machines and serving most of the city. In London theatres and other cultural buildings, power water was moving floors, organ consoles, fire curtains and stages. Water under pressure worked water pumps and lifted the bascules of the Tower Bridge.

Layout london hydraulic power companyIllustration: layout of London Hydraulic Power Co. mains and pumping stations, 1895.

Fire hydrants were also advantageously served by the high pressure system and several hundreds of them were connected to the London Hydraulic Power Company's mains. These fire-fighting systems increased the pressure of the domestic water mains by injecting a small amount of high pressure water in them, using a jet pump. By itself, water at high pressure from the hydraulic power mains could not be supplied in adequate quantity to have an effect on a large fire, while the domestic supply mains had enough quantity but not enough pressure to reach the top floors of buildings.


In London, five interconnected central power stations pumped high pressure water in a dozen hydraulic accumulators and almost 300 km of supply mains, powering more than 8,000 machines and serving most of the city.


Another remarkable application of high pressure water in London was the Silent Dustman, a water powered vacuum cleaning system that came on the market in 1910. Several large hotels were completely "wired" for this system: water from the town mains was used in a jet pump to produce a vacuum in a pipe to which the system was to be fitted. Along these pipes were a number of nozzles to which flexible hoses could be fixed. Thus the dirt from the sweepers was drawn into the hydraulic pipe and carried away into the drains. The system, which operated silently and efficiently, remained in operation until 1937.

The london hydraulic power company station wappingOne of the London power stations. Note the tower on the right, which houses the hydraulic accumulators.

In London, however, hydraulic power does not seem to have made a great impact on the domestic scene. In The Hydraulic Age (1980), B. Pugh notes that this was "possibly due to the fact that in its day domestic labour was cheap and in plentiful supply. Had present-day conditions operated then possibly the story would have been different since the potentialities of hydraulic power were not less than those of electricity today."

Most public power water networks supplied water under a pressure of 700 to 800 psi (48 to 55 bar), with the exception of Manchester and Glasgow, where water was pressurized to 1120 psi. In these cities, there was a heavy demand for power for hydraulic presses used for baling, an application that required a higher pressure.

Power Networks Outside Britain

The British power systems inspired similar networks elsewhere: Antwerp in Belgium, Buenos Aires in Argentina, and Melbourne and Sydney in Australia. While the Australian systems were reminiscent of those in Britain (with 80 km of mains, the one in Melbourne was the second largest ever built), the Argentinian system was used to pump sewage, and the network in Antwerp was aimed at the combined production of mechanical power and electricity. The latter was an attempt to overcome the very high transmission losses of electricity at the time.

Zuiderpershuis old picture"Zuiderpershuis": a former hydraulic pumping plant in Antwerp. The towers housed the hydraulic accumulators.

In The Hydraulic Age, B. Pugh writes that:

"For power transmission, the early electric stations were faced with the same difficulties as the hydraulic power stations, their voltage being analogous to working pressure, and voltage drop due to mains resistance analogous to pressure drop due to pipe friction. The early electric public power stations were direct or continuous current stations, the voltage of generation essentially being only slightly higher (by the voltage drop in the cables) than at the consumer's premises which for safety reasons had to be less than 250 volts. Due to voltage limitation, the area of supply as well as the amount of power that could be transmitted was limited."


The network in Antwerp was aimed at the combined production of mechanical power and electricity


Since 1865, Antwerp had been using a high pressure hydraulic network for powering cranes, bridges and sluices in the harbour. To this was added a second network in 1893, which distributed high pressure water to electric substations scattered across the city (twelve according to the plan, but only three were built). There, water turbines generated electricity which was distributed in a radius of 500 m via underground electric conduits -- this was about the distance at which low voltage could be distributed efficiently.

Hydraulic cranes in antwerpHydraulic cranes in Antwerp harbour. Picture by Low-tech Magazine.

The Antwerp system, which was used for operating street lighting, thus did on a large scale what water motors connected to dynamos did on a small scale with water from the town mains (see the previous article). About 66% of the hydraulic energy was converted to electricity. At its peak, the network reached a length of 23 km with an output of 1200 hp. There were also a number of places in London where consumers ran small electric generators from the hydraulic supply.

Power Water Versus Electricity

The breakthrough in high voltage electric transmission at the turn of the century made systems like those in Antwerp immediately obsolete. The electricity generating part of the network disappeared in 1900. Producing water under pressure in order to produce electricity involves a fourfold energy conversion, which is needlessly wasteful if you can just produce electricity and transport it efficiently.

The expansion of efficient electrical transmission also stopped the construction of other large-scale power water networks before the century was over. "Had these systems been started some years earlier, they might have become vastly more popular", writes Ian McNeil in Hydraulic Power (1972). "A few years later, and they would probably never have been built at all."

However, almost all public power water systems that were built between the 1870s and 1890s remained in service until the 1960s and 1970s, eventually using electric motors instead of steam engines for pumping. The power water network operated by the London Hydraulic Company, the last to survive, worked until 1977. Most of the public power water networks kept growing during the first decades of the twentieth century, reaching their heydays at the end of the 1920s. The fatal decline came only when factories started leaving the cities in the 1960s and 1970s.


If electricity is the most efficient and practical way of transmitting and distributing power, then why did almost all power water networks remain in service for almost a century?


This raises two questions. First, why didn't power water become the universal method of power distribution that Joseph Bramah and William Armstrong had envisioned? And second, if electricity is the most efficient and practical way of transmitting and distributing power, then why did almost all power water networks remain in service for almost a century?

Advantages of Electric Power

As a power transmission technology, power water has three important disadvantages in comparison to electricity. First of all, electricity can be transported efficiently over much longer distances. Hydraulic power transmission was (and still is) at least as efficient as electric power transmission up to distances of 15 to 25 km. Beyond those distances, however, electric transmission is a clear winner.

Hydraulic lock gateGreenland dock hydraulic lock gates in London, built in the 1880s. Picture credit: Chris Allen.

A second shortcoming of hydraulic transmission is that a complex distribution network introduces additional energy loss. Every curve or bend in the mains increases friction losses. The more intricate the network, the less efficient it becomes. Electric transmission doesn't have this problem, at least not in a significant way. The friction losses in the water mains limit the amount of machines that can be attached to a power water network, while electricity can be subdivided almost infinitely.

The third limitation of power water is the limited capacity of a hydraulic transmission line. Water under pressure can only be moved through thin pipes at walking speeds in order to avoid excessive friction losses. At higher speeds, the loss of friction increases as the square of the velocity and efficiency goes down fast, even over relatively short distances. This limits the flow rate and thus the power that could be delivered by a hydraulic transmission line.

Using a 10 to 12 cm diameter pipe -- a common size in most high pressure system at the time -- a hydraulic transmission line could produce a maximum continuous power of 115 to 205 horse power (85 to 150 kW). High voltage electric transmission lines of similar size can carry an amount of power that was orders of magnitude greater than that.

Advantages of Power Water

However, none of these disadvantages mattered for the power water networks that we have discussed. These were all decentralized systems, with machines no more than 15-25 km away from the power source.  Secondly, because the hydraulically operated machinery in harbours, railway yards, factories and buildings was characterized by slow motion and infrequent use, the slow transmission speed of power water presented no obstacle.

With the exception of the short-lived electricity generating system in Antwerp, none of the Armstrong-type power water networks supplied power to a large amount of continuously operating machines. (But note the medium pressure power water networks in Switzerland). Lastly, because a power water network operated relatively few (but very powerful) machines, friction loss through bends and curves in the network was limited.

Hydraulic accumulatorHydraulic pump, accumulator and press. Source: Portefeuille économique des machines, de l'outillage et du matériel, December 1864, Bibliothèque nationale de France.

The limitations of hydraulic transmission were very well understood at the end of the nineteenth century. However, engineers also grasped the unique benefits of the technology, which still hold today. For example, Robert Zahner, an advocate of yet another alternative to electricity, compressed air, wrote in The Transmission of Power by Compressed Air (1890) that:

"The practical incompressibility of water renders the hydraulic method unfit for transmitting regularly a constant amount of power. It can be used to advantage only where motive power is to be accumulated and applied at intervals, such as raising weights, operating punches, compressive forging and other work of intermittent character, requiring a great force through a small distance."

Hydraulic transmission is "admirably adapted for use with heavy machinery and equipment in operations requiring marked concentration of power, reciprocating straight-line motion, and intermittent action", wrote Louis Hunter in The Transmission of Power (1991). The main excellence of the hydraulic accumulator is that it allows to operate machines that require much more power than the energy source can supply -- Pascal's "force multiplication".


The limitations of hydraulic transmission were very well understood at the end of the nineteenth century. However, engineers also grasped the unique benefits of the technology, which still hold today.


Hydraulic liftWhen high force or torque are needed, hydraulic power systems are a much more compact and energy efficient solution than mechanical or electric drives. Both electric motors and combustion engines often need mechanical power transmission (gears, chains, belts) to convert their high rotational speed to a slower speed with higher torque.

Likewise, hydraulic power systems easily produce linear motion using hydraulic cylinders, while electric power requires costly linear motors or mechanical power transmissions such as rack-and-pinion assemblies. Hydraulic and electric power are complementary in this sense: one of the limitations of power water transmission was the relative difficulty of converting linear motion to rotary motion.

Pelton wheels were the most obvious choice, but their high rotational speed involved the use of gearing for the operation of slow speed machinery. A number of hydraulic engines of the ram type was available to supply rotative power involving variable or slow speed operation, but these engines had few advantages compared to electric or mechanical drives.

A third important advantage of hydraulics is that the power is always readily available in the pipes and in the accumulator, but when there is no demand there is no waste. When none of the machines in a power water network was in operation, the hydraulic accumulators kept the lines pressurized without using any energy. This advantage is especially relevant when machines are used intermittently.

Hydraulics Today

Hydraulic power is still in use today, especially in heavy industrial equipment that requires a slow but powerful linear motion, and in mobile construction machinery such as excavators. However, the raised-weight hydraulic accumulator and the power water networks have disappeared.

The pressurized fluid is no longer water but oil, mixed with additives. (Vegetable oil had been used as a hydraulic medium in the 19th century). Unlike water, oil doesn't freeze and is not corrosive. However, it makes hydraulic power more expensive and it obviously doesn't permit the exhaust fluid to end up in the sewer network, the docks or the sea.

Partly as a consequence of the use of oil, there evolved the self-contained hydraulic power pack consisting of pump, hydraulic accumulator, and return flow systems, ready to be coupled to an electric motor or a diesel engine. The hydraulic accumulators in these systems are much smaller, they use a gas to compress the fluid, and they do not maintain a steady pressure.

Hydraulic accumulators todayToday's hydraulic accumulators (usually compressed gas types) have little in common with the raised-weight accumulators in power water networks. Picture: HYD.

While the practical benefits of hydraulics remain -- a large amount of power can be transferred and controlled precisely using very compact components -- the modern approach erases an important efficiency advantage specific to the more centralized power water networks of the nineteenth and twentieth century. In a city-wide power water network, a comparably small central power source -- a handful of hydraulic accumulators -- could operate a large number of very powerful machines. The pumping engines didn't have to be dimensioned for peak loads.


A great advantage of power water networks was that comparatively little power capacity was required to operate a large number of powerful machines over a wide area.


 B. Pugh laments this evolution in The Hydraulic Age (1980):

"One century ago, only a few very large machines -- swing bridges and an occasional hydraulic press -- had their own individual pumping equipment. More recently, this trend spread throughout hydraulically operated machinery of all types and sizes, and is accepted practice today. With unit hydraulic power packs each piece of equipment will be driven by its own motor and will have its own instrumentation, filters, etcetera, which will call for periodic inspection and maintenance."

"The motor will run continuously while the unit is in use regardless of the load on the pump it drives. In the case of a number of such units not all will be working to capacity all the time. Appreciable economy could be effected by having a central pumping plant to supply a number of units and due to the diversification of the load the maximum load at any one time will be less than the sum of the individual maximum loads."

"An advantage of a large station over a number of smaller ones lies in the ability to meet diversity of demand. A number of small, independent power stations must each have sufficient capacity to meet the peak demand of its own area of supply and the peaks will not occur at the same time. A large station, embracing the total area of a number of small stations, will need only to meet the maximum simultaneous demand and this will normally be less than the sum total of the local peaks."

Alternatives to Electricity

Just like mechanical power transmission technologies -- such as jerker line systems and endless rope drives -- power water networks have disappeared largely because electric transmission has superior efficiency over long distances. However, in a more decentralized energy system based on renewable energy, all these forgotten alternatives for electricity deserve to be reconsidered for specific purposes. Raised-weight hydraulic accumulators could be solar, wind or even pedal powered.

Hydraulic power company valve coverPicture: J.W. Gibson

Around 1900, the superiority of electricity for transmitting power over very long distances was not disputed. For moderate distances, however, quite a few authors doubted its usefulness. For example, R. Kennedy wrote in Modern Engines and Power Generators (1905):

"Electricity offers paramount advantages for power transmission to a distance in most cases. Electrical engineers, however, claim far too much for it. They are apt to forget other means for transmitting power, which means have paramount advantages over electricity in a good many cases."

W.C. Unwin, the author of the most complete nineteenth-century book on power transmission (On the Development and Transmission of Power from Central Stations), expressed a similar concern in 1894:

"Granting that electrical distribution will play an important part before long in the development of systems of power distribution, there is a popular tendency at the moment to regard too exclusively electrical methods, and to overlook other means of power distribution which have been usefully applied in the past, and will, in suitable conditions, be still employed in the future... For transmission to moderate distances there is a choice of several means of transmission, and electrical distribution has not in such cases and up to the present established any universal superiority."

In the next installment of our power transmission series, we will discuss compressed air, which is probably the most usable alternative for electricity.

Kris De Decker

This article is dedicated to Charles Steele. RIP.


Related articles:

Sources (in order of importance):


16 Jul 21:54

Well-Tended Fires Outperform Modern Cooking Stoves

by kris de decker

Three stone fire 2

Despite technological advancements since the Industrial Revolution, cooking remains a spectacularly inefficient process. This holds true for poor and rich countries alike. While modern gas and electric cooking stoves might be more practical and produce less indoor pollution than the open fires and crude stoves used in developing countries, they are equally energy inefficient.

In fact, an electric cooking stove is only half as efficient as a well-tended open fire, while a gas hob is only half as effective as a biomass rocket stove. And even though indoor air pollution is less of an issue with modern cooking stoves, research indicates that pollution levels in western kitchens can be surprisingly high.

Image: a typical three-stone fire. Source: Global Alliance for Clean Cookstoves.

----------------------------------------------------------------------------------------------------------------------------------------------

----------------------------------------------------------------------------------------------------------------------------------------------

Present-day cooking methods in poorer countries are quite well documented, as they are one of the main concerns of NGOs which promote appropriate technological development. An estimated 2.5 to 3 billion people still cook their food over open fires or in rudimentary cookstoves, and these numbers keep increasing due to population growth.

The most basic and widely used type of cooking device is the wood-fuelled "three-stone fire", which is made by arranging three stones to make a stand for a cooking pot. Alongside the three-stone fire -- which dates back to Neolithic times -- many types of home-made cooking stoves can be found. They are powered by burning coal or biomass, be it wood, crop residues, dung or charcoal. [1]

Cooking fire inside the houseIndoor cooking in poor countries. Image: Source: Global Alliance for Clean Cookstoves.

The main concern with the use of crude biomass cooking stoves is their destructive influence on human welfare and natural resources. When used indoors, biomass cooking stoves lead to severe health issues such as chronic lung diseases, acute respiratory infections, cataracts, blindness, and adverse effects on pregnancy. The main victims are women, who do most of the housework, and young children, who are often carried on the mother's back while she is cooking.

Inefficient biomass stoves also force people (again, most often women) to spend much of their time collecting fuel. The environmental degradation caused by biomass stoves is equally problematic. When wood is used as a primary fuel, inefficient cooking methods lead to large-scale deforestation, soil erosion, desertification and emissions of greenhouse gases. For coal-fuelled stoves, the main issue is indoor air pollution.

The Thermal Efficiency of a Three-stone Fire

At the heart of the problem lies the low thermal efficiency of traditional cooking methods. For three-stone fires, thermal efficiency is stated to be as low as 10 to 15%. [1][2] In other words: 85 to 90% of the energy content in the wood is lost as heat to the environment outside the cooking pot. Obviously, this low efficiency wastes natural resources, but it also boosts air pollution and greenhouse gas emissions because the relatively low temperature of the fire leads to incomplete combustion.

----------------------------------------------------------------------------------------------------------------------------------------------

Well-constructed three-stone fires protected from wind and tended with care score between 20 and 30% thermal efficiency

----------------------------------------------------------------------------------------------------------------------------------------------

Improved three-stone fireAn improved three-stone fire. Picture: Chef Cooke @ Flickr.

However, the issue is more complicated than it is usually presented. To begin with, the productivity and cleanliness of an open fire (and similar crude cooking stoves) greatly depends on the circumstances in which they are used and on the skills of the cook. In its test of 18 cooking stove designs from all over the world, the Partnership for Clean Indoor Air (PCIA) [3][4] concluded that:

"Well-constructed three-stone fires protected from wind and tended with care scored between 20 and 30% thermal efficiency. Open fires made with moister wood and operated with less attention to the wind can score as low as 5%. The operator and the conditions of use largely determine the effectiveness of operation. If the sticks of wood are burnt at the tips and pushed into the center as the wood is consumed, the fire can be hot and relatively clean burning."

Due to the influence of environmental factors such as wind, an indoor three-stone fire is generally more efficient than one operated outside. However, outdoor open fires can also be made more efficient by placing them in a hole in the ground or by shielding them with the use of earthen walls, which also adds thermal mass. Furthermore, PCIA remarks that "it is important to recognize that the open hearth and resulting smoke often have considerable cultural and practical value in the home, including control of insects".

The Thermal Efficiency of Improved Biomass Stoves

Especially since the 1970s and 1980s, many international NGO's have tried to improve cooking traditions in poorer countries. This has resulted in a large number of so-called "improved cooking stoves", which again vary in terms of design, performance and costs. Hundreds of variations exist. [1][4]

Clean cookstovesA collection of improved biomass stoves. Source: Global Alliance for Clean Cookstoves.

Some of these designs are exclusively aimed at minimising air pollution at the cost of higher fuel consumption, while other designs achieve a higher efficiency but increase air pollution. [4] In this article, we will focus exclusively on cooking stoves that address both issues simultaneously. This is not to suggest that other designs can't be preferable in certain circumstances. For example, because biomass cooking stoves do not present direct health problems when used outdoors, saving fuel would be the most important aim in that context.

Compared to a basic three-stone fire with 10-15% thermal efficiency, improved cooking stoves can easily halve the fuel requirements of the cooking process. This can be achieved by providing an insulated combustion chamber, improving the air supply, and other measures.

Specific energy consumption of cooking stoves

In a laboratory comparison of five major types of biomass cooking stoves, it was found that an improved rocket stove uses 2,470 kJ to boil one litre of water and then simmer it for 30 minutes, while a basic three-stone fire requires 6,553 kJ to fulfill the same task (see the dark blue bars in the graphic above). [5][1] The rocket stove thus uses 60% less fuel than the three-stone fire. Furthermore, the rocket stove boils 2.5 litres of water more than 5 minutes faster (see the light blue points in the graphic above).

----------------------------------------------------------------------------------------------------------------------------------------------

A rocket stove can double the thermal efficiency of a well-tended open fire

----------------------------------------------------------------------------------------------------------------------------------------------

The values are the average of three tests and measure specific energy consumption instead of thermal efficiency. Both test methods have their shortcomings -- measuring the efficiency of cooking is suprisingly complex -- so by applying both methods the accuracy of an experiment increases. [6] This was done by the Partnership for Clean Indoor Air, which compared the thermal efficiency and specific energy consumption of 18 cookstove designs, including a well tended open fire with a thermal efficiency of 20-30%. [4]

20 litre can rocket stoveIn this study, one of the best performing improved biomass stoves -- a 20 liter can rocket stove (image at the right) -- convincingly beats the efficiency of the well-tended open fire. It requires 733 grams of wood (12,579 kJ) to bring five litres of water to boil and simmer for 45 minutes, only 65% of the 1,112 grams of wood (19,496 kJ) required by the well-tended open fire. The thermal efficiency of the rocket stove varies between 23 and 54%. [7]

The rocket stove also lowers air pollution: the emissions are only 26% of the carbon monoxide (CO) and 60% of the particulate matter (PM) produced by the well-tended open fire. Lastly, it shortens cooking time to 22 minutes for five litres of water, compared to 27 minutes for the open fire.

The top performing biomass stove in the test is a wood gas stove, with slightly more than one-third the wood consumption (459 grams of wood or 9,434 kJ) and 15-20% of the pollution levels of the three-stone fire. It has a thermal efficiency of 44-46%. However, it requires an electric fan to improve combustion efficiency, while all others are natural-draft stoves.

Cooking in Wealthy Households

There is great irony in the fact that the improved biomass stoves mentioned above are much more efficient than modern cooking stoves used in the western world and in wealthier households of developing nations. In fact, most modern cooking stoves have a thermal efficiency that is on par with that of a three-stone fire.

The western world switched from open fires to closed cookstoves from the eighteenth century. Initially, these "kitchen stoves" were used for both heating and cooking, and were powered by coal, charcoal or biomass. When central heating systems were introduced in the early twentieth century, the kitchen stove was replaced by a stand-alone cooking appliance, powered by gas or electricity.

----------------------------------------------------------------------------------------------------------------------------------------------

Improved biomass stoves have double or triple the thermal efficiency of modern electric or gas cooking stoves

----------------------------------------------------------------------------------------------------------------------------------------------

Conventional electric hobs use attached iron plates as their heating units, while more sophisticated models use infrared, halogen or induction units, which are positioned below glass ceramics. Of these, only induction-based cooking plates are more efficient than conventional electric hobs. The others mainly offer increased convenience, such as greater ease when cleaning. Most gas cooking stoves place burners on top of a stainless steel or ceramic surface, while others place them on top or beneath a glass ceramic surface. Again, the latter offers increased convenience, but no significant efficiency benefit. [8]

Electric stoveAn electric glass-ceramic cooktop (Source: Wikimedia). Less efficient than a well tended open fire.

Research into the efficiency of modern cooking stoves is rather limited. According to a study by the Dutch research institute VHK, a traditional electric cooktop (with vitro-ceramic plate) has a thermal efficiency of 13%, while that of an electric induction cooker is 15%. A microwave obtains 19% thermal efficiency. Only a classical gas cooking stove (23%) reaches the thermal efficiency of a well-tended three-stone fire. [8] While the study is aimed primarily at the preparation of hot drinks, it is the most complete study available and its results are applicable to cooking food with only a few small caveats. [9]

Now, if we compare the thermal efficiencies from modern cooking stoves with those from stoves used in poorer households, we see that the improved biomass stoves in developing countries beat our "high-tech" cooking technology with a factor of two to three (graphic below). Gas or electric ovens are not included in this comparison, but their efficiency is even lower than gas or electric hobs because water is a much better conductor of heat than air.

Thermal efficiency comparison of cooking stoves in rich and poor countries

The low efficiency of modern cooking devices may surprise people, as these are not the figures that are usually presented in sales brochures or consumer reports. For example, the Californian Consumer Energy Center gives an efficiency level of 90% for an electric induction cooker, 65% for a standard electric range, and 55% for a gas burner. [10]

Power Conversion Losses

The main discrepancy with these figures is caused when one doesn't take into account that electricity first needs to be produced in power plants which sometimes convert less than a third of the primary energy into electricity [11]. This is not an issue with gas or biomass stoves, where a primary fuel is directly converted into heat for cooking. [12] But it does have a destructive effect on the thermal efficiency of any electric cooking device, be it an electric hob or a microwave. In the graphic below, power conversion losses are indicated by the dark blue bars.

The VHK study assumes an electric grid efficiency of 40%. This figure takes into account power generation and distribution losses, as well as fuel extraction and a projected saving on these issues over an average product life of 10-15 years. [8] It should be noted that this percentage corresponds to a global average, including the use of renewables and atomic energy. Depending on the country, grid efficiency can be higher or lower. [13]

Thermal efficiency of modern cooking stovesBoiling water preparation energy impact (kWh primary energy for 1,000 litre useful boiled water per year) for different cooking devices. Dark blue: power generation loss. Light blue: heat loss. Red: theoretical minimum. Pink: production, distribution, end-of-life. Pink: extra boiling time. Purple: standby. Green: over-filling. Source: [8].

If we only look at the different types of thermal power plants, we find that the thermal efficiency for a traditional coal plant (81% of all coal-based power plants in use) is only 25 to 37%, while that of a common direct-combustion biomass power plant is only 20%. [13][14] At world level, the average energy efficiency of thermal power plants is 36%. [13] These percentages should be reduced with electric transmission and distribution losses, which are on average 6% in Europe, 7% in the USA, and 9% on a world level. [13]

This means that if your electric stove is operated by electricity from a biomass power plant -- a fast growing "green" trend nowadays -- the power conversion efficiency is three to four times lower (11-14%) than the authors of the study assume, and thermal efficiency drops to about 5%. This is similar to the thermal efficiency of a neglected open fire, and one-tenth the thermal efficiency of a rocket stove. Likewise, a cookstove which uses coal or gas directly to heat food is much more energy efficient than a cookstove that runs on electricity produced by a coal or gas power plant.

----------------------------------------------------------------------------------------------------------------------------------------------

Essentially, any electric cooking device is an insult to the science of thermodynamics

----------------------------------------------------------------------------------------------------------------------------------------------

Evidently, there is something wrong with the western approach to sustainability. Converting heat into electricity which is then converted back into heat, at 20-40% efficiency, is similar to building a Rube Goldberg machine; it's a needlessly complex operation compared to simply converting the primary fuel into heat to boil water. Essentially, any electric cooking device is an insult to the science of thermodynamics.

Heat Transfer Loss

A second problem is that the high efficiency figures given in sales brochures and consumer reports underestimate the heat loss that occurs during the heat transfer from cooking stove to cooking pot (shown by the light blue bars in the graphic above). This heat loss is present with all cooking stoves, but is especially high in the case of gas hobs. In the graphic above, the red bar concerns the minimum energy that it takes to boil 1,000 litres of water, assuming that there is no energy loss during the heat transfer between the cooking stove and the water. This value is 105 kWh/yr for a starting cold water temperature of 10 degrees celsius.

Energy losses appear because of three reasons. Firstly, some heat from the cooking fire escapes before it can reach the cooking vessel. Secondly, some heat from the cooking fire is used to heat up the cooking pot, which constantly loses heat to the environment. Lastly, heat is wasted because some of the boiling water escapes through evaporation. While the red bar is logically the same for every cooking device, the light blue bar showing the additional energy required to compensate for heat transfer loss varies from 57 kWh/yr for an electric induction stove to 255 kWh/yr for a gas hob.

Gas stoveGas stoves have the largest heat transfer losses of all modern cooking stoves. Picture: Ashley Bischoff @ Flickr.

Heat transfer loss is not fully accounted for in most testing standards for cooking appliances. For example, the US standard uses a test by which the heat transfer efficiency of a cooking top is established from heating up aluminum cylinders of certain dimensions, not pots of water. [15][16] This avoids the complex phase change from liquid to vapour and is thus better reproducible.

----------------------------------------------------------------------------------------------------------------------------------------------

Heat transfer loss is not fully accounted for in most testing standards for cooking appliances

----------------------------------------------------------------------------------------------------------------------------------------------

However, as all the heat of the cylinder is counted as useful, it ignores that in real life situations some energy -- notably the energy to heat up the pot or kettle itself -- is wasted. Only taking into account the energy loss in heating the pot itself, energy efficiency decreases with about 10% of the figures given by standard tests, concludes VHK. [8] Furthermore, the US test is modeled after the process of boiling food on all burners or hot plates simultaneously, which is not always the case. Heat transfer losses are larger when only one or two pots are on the fire.

Three stone fire 3An outdoor three-stone fire. Image: Global Alliance for Clean Cookstoves.

Apart from power conversion losses and heat transfer losses, the remainder of the energy losses are due to production, distribution and disposal of cooking devices (embodied energy), standby losses (which are only relevant for microwaves, induction stoves and sophisticated gas stoves), and cooking habits. These factors have a relatively small influence.

Of all the energy losses involved in modern cooking appliances, only heat transfer loss applies to cooking devices in poorer households. There are no power conversion losses, fuel is mostly gathered by hand, there are no standby losses, and embodied energy is negligible as most devices are home-made.

Indoor Air Pollution in Rich vs. Poor Households

While the thermal efficiency of modern cooking devices is clearly inferior to that of a well-tended three-stone fire or rocket stove, they do have an advantage when it comes to indoor air pollution. However, this is not a black-and-white issue either. Air pollution levels depend on what you're cooking, how skillful you are, and which technology you use.

In the worst case scenario, pollution levels in modern kitchens can be similar to those of a well-tended three-stone fire indoors. This is not to say that the problem of indoor pollution in poor households is overstated, but rather that cooking in modern kitchens is not always as clean as we assume it to be.

----------------------------------------------------------------------------------------------------------------------------------------------

Pollution levels in modern kitchens can be similar to those of a well tended three-stone fire inside the house

----------------------------------------------------------------------------------------------------------------------------------------------

Particulate matter (PM) is considered as the single best indicator of potential harm in air quality. [4] In poor households where indoor cooking happens with crude stoves or open fires, PM-levels vary from 200 to 5,000 ug/m3 over a 24-hour period, and from 300 to 20,000 ug/m3 during the actual use of stoves. [17][18][19] The Partnership for Clean Indoor Air measured PM emissions for a well tended three-stone fire, which resulted in values of between 281 and 2,004 ug/m3 while cooking. [4]

Indoor air pollution cookstovesIndoor cooking with biomass stoves. Image: Global Alliance for Clean Cookstoves.

Similar research undertaken in a kitchen equipped with modern technology found PM concentrations in the kitchen, living room and bedroom from below the detection limit to 3,880 ug/m3 during a variety of 32 different cooking tests with gas and electric ranges. [20] The medium and average concentrations of PM during the 32 cooking tests exceeded ambient air quality standards (which are 150 g/m3 for PM10 and 65 ug/m3 for PM2.5). These values come close to the best-case scenarios in poor households.

Importantly, cooking pollutants are not caused by the burning of gas or fuel alone, but also in the cooking process itself. PM2.5 concentrations were over 1,000 ug/m3 during stovetop stir-frying, baking lasagna in the gas oven, and frying tortillas in oil on the range top burner. The authors conclude that:

"Very high levels of several pollutants were measured in indoor air during different types of cooking activities. The levels measured for some cooking activities exceeded health-based standards and guidelines, and could pose a risk to home occupants, especially susceptible groups of the population such as young children and the elderly."

Unfortunately, gas stoves -- which have the highest thermal efficiency of all modern cooking stoves -- produce the most air pollution in modern kitchens. [20] The average indoor PM emissions for gas stoves can amount to 25% of those of biomass cooking stoves. [19] A 2014 study estimates that 60 percent of homes in California that cook at least once a week with a gas stove can reach pollutant levels of CO, NO2 and formaldehyde that would be illegal if found outdoors. [21] The authors state that:

"If these were conditions that were outdoors the EPA (Environmental Protection Agency) would be cracking down. But since it's in people's homes, there's no regulation requiring anyone to fix it. Reducing people's exposure to pollutants from gas stoves should be a public health priority."

Air Pollution and Greenhouse Gas Emissions

Obviously, indoor cooking with an electric stove is the healthiest option, albeit not totally free from producing indoor air pollution. However, electric stoves are only "clean" because they emit most of their pollution elsewhere -- at the smokestacks of the power plant. Any biomass stove design with a chimney basically achieves the same. If a chimney is added to an indoor biomass stove, indoor air pollution drops to almost zero. [4]

Clean cookstoveA clean cookstove in India. Image: Global Alliance for Clean Cookstoves.

And while the burning of coal or gas emits less air pollution and greenhouse gases than the burning of biomass per unit of energy produced [22], you have to burn more fuel in order to make up for the power conversion losses. Especially if your electric stove runs on electricity from a biomass power plant, then air pollution and greenhouse gas emissions are much higher than in the case of a biomass stove.

----------------------------------------------------------------------------------------------------------------------------------------------

If electricity is produced by biomass, an electric cooking stove produces much more air pollution and greenhouse gases than a biomass stove

----------------------------------------------------------------------------------------------------------------------------------------------

On the other hand, if we consider biomass to be climate neutral over time because the harvested forest gets a chance to grow back, then a biomass stove beats all other cooking methods when it comes to greenhouse gas emissions. The same goes for the cooking stove powered by electricity from biomass, although it would produce considerably more air pollution than the biomass stove, and require a much larger area of sustainably managed forest.

What's the solution?

When the German Wuppertal Institute investigated the potential for improved energy efficiency of cooking stoves on a global scale, they concluded that energy use could be halved. [2] Although it's remarkable how the proposed solutions for this energy inefficiency differ for poor and rich countries. In the developing world, the focus is mainly on designing more efficient biomass stoves that produce fewer pollutants. While achieved savings as a result of switching to biogas would be larger, its investment would be 30 times higher compared to the distribution of improved wood cooking stoves. [2]

Clean cookstove 2An improved biomass cookstove in India. Source: Global Alliance for Clean Cookstoves.

For the developed world, the Wuppertal Institute focuses on a much more costly measure: extending the use of the most efficient types of "western" stoves, such as the electric induction hob. However, as we have seen, these stoves are far less efficient than the improved biomass stoves, and they are also more expensive. The authors infer that, compared to developing countries, energy saving potentials with modern cooking stoves are far smaller and less cost-efficient. But as is apparent from the inefficiencies of western cooking technology, the energy savings potential is, in reality, larger.

One possibility for the West to improve the sustainability of its cooking stoves, not mentioned by the Wuppertal Institute, is to generate electricity by wind, solar or water energy. If electricity is generated by renewable energy, electric hobs and microwaves suddenly beat all other cooking stoves when it comes to efficiency, air pollution and greenhouse gas emissions. That being said, using renewable energy to produce electricity to create heat for cooking remains a needlessly complex and costly approach to make cooking more sustainable.

There are some obvious but often overlooked solutions that would make cooking close to 100% sustainable in rich and poor countries alike. See our follow-up article: "If we insulate our houses, why not our cooking pots?".

Kris De Decker (edited by Jenna Collett)

----------------------------------------------------------------------------------------------------------------------------------------------

Notes & Sources

[1] "What users can save with energy-efficient cooking stoves and ovens", Oliver Adria and Jan Bethge, October 2013.

[2] "The overall worldwide saving potential from domestic cooking stoves and ovens", Oliver Adria and Jan Bethge, October 2013.

[3] As of 2012, the Partnership for Clean Indoor Air (PCIA) has integrated with the Global Alliance for Clean Cookstoves.

[4] "Test Results of Cook Stove Performance", Partnership for Clean Indoor Air, 2012. See Appendix C for the University of California Berkeley (UCB) Water Boiling Test (WBT) protocols.

[5] "A laboratory comparison of the global warming impact of five major types of biomass cooking stoves", Nordica MacCarthy, 2008

[6] Thermal efficiency rewards the production of excess steam, while specific consumption penalizes it. For the pros and contras of both testing approaches, see [4], page 76-77.

[7] These percentages concern the outer values of different test procedures and during different stages of the cooking process. The thermal efficiency of a rocket stove is especially high when bringing water to boil but its advantage is much smaller during simmering.

[8] "Quooker Energy Analysis", Part one, Van Holsteijn en Kemna B.V. (VHK), March 2010.

[9] The heat transfer efficiency figures chosen by [8] are based on a typical mixed use of cooking stoves, in which the energy is used both for preparing meals and for hot drinks. Since boiling smaller amounts of water for hot drinks is somewhat less efficient, this approach underestimates the heat transfer efficiency of cooking food. However, to be on the safe side, the researchers are rather conservative in their revision of heat transfer efficiencies (see chapters 2.2 & 2.4), so the difference must be small.

[10] "Stoves, Ranges and Ovens", Consumer Energy Center, California Energy Commission.

[11] The average efficiency of a coal plant is 35%. See: "Power generation from coal: Measuring and Reporting Efficiency Performance and CO2 Performance", OECD/IEA, 2010.

[12] It should be noted that the energy losses of the natural gas distribution network can be rather large, and this fact does not seem to be taken into account in the study. The thermal efficiency of gas stoves may thus be overstated. The same goes for the greenhouse gas emissions, mainly due to methane leaks during gas production.

[13] "The state of global energy efficiency: global and sectorial energy efficiency trends", Enerdata.

[14] "How is biomass energy used?", Canadian Centre for Energy Information.

[15] "Test Procedure for Residential Kitchen Ranges and Ovens", US Department of Energy, 1997. For related documents, see "Residential Kitchen Ranges and Ovens".

[16] "Evaluation of Kitchen Cooking Appliance Efficiency Test Procedures", Steven Nabinger, US Department of Commerce, 1999

[17] "Smoke, health and household energy. Volume 1", Liz Bates, 2005.

[18] "The health effects of indoor air pollution exposure in developing countries", WHO, 2002

[19] "health effects of chronic exposure to smoke from biomass fuel burning in rural areas", WHO India, 2007

[20] "Indoor Air Quality: Residential Cooking Exposures", R. Fortmann et al., State of California Air Resources Board, 2001

[21] "Pollutant exposures from natural gas cooking burners: a simulation-based assessment for southern california", Environmental Health Perspectives, January 2014.

[22] "Trees, Trash, and Toxics: How Biomass Energy Has Become the New Coal", Mary . Booth, Partnership for Policy Integrity, April 2014

----------------------------------------------------------------------------------------------------------------------------------------------

23 May 00:03

Neuer Cartoon online - LIMO vom 03.04.2014

by info@nichtlustig.de (NICHTLUSTIG)







© 2013 Joscha Sauer & NICHTLUSTIG J. Sauer & M. Vogel GbR
25 Mar 06:43

WTD 1344

by Aaron
Nielsmaneschijn

Tee hee

15 Mar 21:19

Detailed Floor Plan Drawings of Popular TV and Film Homes

by Pinar
The Simpsons

If you've ever wondered what the layout of your favorite fictional character's apartment looked like, interior designer Iñaki Aliste Lizarralde may have hand drawn exactly what you're looking for. The Spain-based artist, who also goes by nikneuk, has colorfully illustrated a number of aerial diagrams mapping out the layout of popular TV and film homes for his Floorplans series. We finally get to see just how big and spacious many of these supposedly tiny apartments are.

The artist's scaled blueprints account for everything from architectural design to interior furnishings. The illustrations consist of anything he's witnessed from each respective show or film, from the famed couch in The Simpsons to the Carrie Bradshaw's roomy walk-in closet on Sex and the City. The artist even includes minute, iconic details like the half-bathtub sofa in Holly Golightly's fairly empty party pad in Breakfast at Tiffany's.

Lizarralde's carefully sketched floor plans even accommodate for slight discrepancies in size he's taken note of, especially in the Up house. He explains: "For it [to] seem more real the designers made a house as small as possible. The result is that this house is bigger inside than the outside… I have tried to reconcile these two aspects in this floorplan."


Friends


Seinfeld


Dexter


The Big Bang Theory


Sex and the City


The Golden Girls


Three's Company


I Love Lucy


Breakfast at Tiffany's


Frasier


Will & Grace


How I Met Your Mother


Up


My Neighbor Totoro

Iñaki Aliste Lizarralde on Tumblr
Iñaki Aliste Lizarralde on deviantART
via [Laughing Squid]
04 Mar 21:14

Good evolutionary defense mechanisms: Running very fast. Hiding...



Good evolutionary defense mechanisms: Running very fast. Hiding really well. Being full of poison. Having wicked spikes. 

Questionable evolutionary defense mechanisms: … whatever this is.

27 Feb 20:03

Long-Exposure Photos of Light Rising Up from Snowy Landscapes

by Michael Zhang

Long Exposure Photos of Light Rising Up from Snowy Landscapes kevincooley lightsedge 4

Lights Edge” is a series of beautiful pictures by photographer Kevin Cooley that show beams of light rising up from various winter landscapes. They’re simple long-exposure photographs that aren’t the result of any digital trickery. Instead, Cooley simply opened up his 4×5 camera and launched military-grade emergency flare into the night sky.

Long Exposure Photos of Light Rising Up from Snowy Landscapes kevincooley lightsedge 2

Long Exposure Photos of Light Rising Up from Snowy Landscapes kevincooley lightsedge 1

Long Exposure Photos of Light Rising Up from Snowy Landscapes kevincooley lightsedge 3

Long Exposure Photos of Light Rising Up from Snowy Landscapes kevincooley lightsedge 6

Long Exposure Photos of Light Rising Up from Snowy Landscapes kevincooley lightsedge 5

In November of last year, we featured a different project of Cooley’s that also involved flares and snowy landscapes. It was titled Take Refuge, and showed various locations illuminated by the red glow of road flares.

Lights Edge by Kevin Cooley (via Photojojo)

Image credits: Photographs by Kevin Cooley and used with permission

27 Feb 19:59

Photo

Nielsmaneschijn

Heb ik een meme gemist?













27 Feb 19:34

Scientifically Accurate Spiderman

by René
27 Feb 19:28

Photographer Bill Gekas Shoots Portraits of his Daughter in the Style of Classic Paintings

by EDW Lynch
Nielsmaneschijn

Cool ja.

Portraits by Bill Gekas

Australian photographer Bill Gekas creates elaborate portraits of his five-year old daughter that are inspired by classic paintings. Gekas talks about his photography process in this interview with Digital Photography School.

Portraits by Bill Gekas

Portraits by Bill Gekas

Portraits by Bill Gekas

via Digital Photography School