Shared posts

02 Jul 06:51

Atomic structure of the human cytomegalovirus capsid with its securing tegument layer of pp150

by Yu, X., Jih, J., Jiang, J., Zhou, Z. H.

Herpesviruses possess a genome-pressurized capsid. The 235-kilobase genome of human cytomegalovirus (HCMV) is by far the largest of any herpesvirus, yet it has been unclear how its capsid, which is similar in size to those of other herpesviruses, is stabilized. Here we report a HCMV atomic structure consisting of the herpesvirus-conserved capsid proteins MCP, Tri1, Tri2, and SCP and the HCMV-specific tegument protein pp150—totaling ~4000 molecules and 62 different conformers. MCPs manifest as a complex of insertions around a bacteriophage HK97 gp5–like domain, which gives rise to three classes of capsid floor–defining interactions; triplexes, composed of two "embracing" Tri2 conformers and a "third-wheeling" Tri1, fasten the capsid floor. HCMV-specific strategies include using hexon channels to accommodate the genome and pp150 helix bundles to secure the capsid via cysteine tetrad–to-SCP interactions. Our structure should inform rational design of countermeasures against HCMV, other herpesviruses, and even HIV/AIDS.

11 Mar 04:10

Cathode Materials: Atomic Insights into the Enhanced Surface Stability in High Voltage Cathode Materials by Ultrathin Coating (Adv. Funct. Mater. 7/2017)

by Xin Fang, Feng Lin, Dennis Nordlund, Matthew Mecklenburg, Mingyuan Ge, Jiepeng Rong, Anyi Zhang, Chenfei Shen, Yihang Liu, Yu Cao, Marca M. Doeff, Chongwu Zhou
Thumbnail image of graphical abstract

Atomic layer deposition of Al2O3 is employed as ultrathin coating on LiNi0.5Mn1.5O4, a high voltage cathode in Li-ion batteries. X-ray absorption spectroscopy and scanning transmission electron microscopy electron energy loss spectroscopy show that the coating suppresses Mn2+ formation on the surface and decelerates impedance buildup. The detailed analysis by Chongwu Zhou and co-workers is shown in article number 1602873.