Shared posts

25 Mar 01:01

Division and Regrowth of Phase‐Separated Giant Unilamellar Vesicles**

by Yannik Dreher, Kevin Jahnke, Elizaveta Bobkova, Joachim P. Spatz, Kerstin Göpfrich
Division and Regrowth of Phase‐Separated Giant Unilamellar Vesicles**

We demonstrate division of phase‐separated lipid vesicles following quantitative predictions from an analytical model. The division is controlled by metabolic decomposition or light‐triggered uncaging of a fluorophore. This provides spatiotemporal control over the division of a target vesicle. We regrow phase‐separated vesicles by targeted fusion using DNA nanotechnology.


Abstract

Success in the bottom‐up assembly of synthetic cells will depend on strategies for the division of protocellular compartments. Here, we describe the controlled division of phase‐separated giant unilamellar lipid vesicles (GUVs). We derive an analytical model based on the vesicle geometry, which makes four quantitative predictions that we verify experimentally. We find that the osmolarity ratio required for division is , independent of the GUV size, while asymmetric division happens at lower osmolarity ratios. Remarkably, we show that a suitable osmolarity change can be triggered by water evaporation, enzymatic decomposition of sucrose or light‐triggered uncaging of CMNB‐fluorescein. The latter provides full spatiotemporal control, such that a target GUV undergoes division whereas the surrounding GUVs remain unaffected. Finally, we grow phase‐separated vesicles from single‐phased vesicles by targeted fusion of the opposite lipid type with programmable DNA tags to enable subsequent division cycles.