Shared posts

14 Mar 05:20

The Teetering Towers of Abstraction

by Brian Hayes

Abstraction is an abstraction. You can’t touch it or taste it or photograph it. You can barely talk about it without resorting to metaphors and analogies. Yet this ghostly concept is an essential tool in both mathematics and computer science. Oddly, it seems to inspire quite different feelings and responses in those two fields. I’ve been wondering why.

In mathematics abstraction serves as a kind of stairway to heaven—as well as a test of stamina for those who want to get there. West stairs to Grandview Park 2017-10-28West stairs to Grand View Park, San Francisco, October 2017. You begin the climb at an early age, at ground level, with things that are not at all abstract. Jelly beans, for example. You learn the important life lesson that if you have five jelly beans and you eat three jelly beans, you will have only two jelly beans left. After absorbing this bitter truth, you are invited to climb the stairs of ab­straction as far as the first landing, where you replace the tasty tangible jelly beans with sugar-free symbols: \(5 - 3 = 2\).

Some years later you reach higher ground. The sym­bols represent­ing par­tic­ular numbers give way to the \(x\)s and \(y\)s that stand for quantities yet to be determined. They are symbols for sym­bols. Later still you come to realize that this algebra business is not just about “solving for \(x\),” for finding a specific number that corresponds to a specific letter. It’s a magical device that allows you to make blanket statements encompassing all numbers: \(x^2 - 1 = (x + 1)(x - 1)\) is true for any value of \(x\).

Continuing onward and upward, you learn to manipulate symbolic expressions in various other ways, such as differentiating and integrating them, or constructing functions of functions of functions. Keep climbing the stairs and eventually you’ll be introduced to areas of mathematics that openly boast of their abstractness. There’s abstract algebra, where you build your own collections of numberlike things: groups, fields, rings, vector spaces. Ben Orlin cartoon: 'Sorry, I only do abstractions, not numbers.' 'But numbers are abstractions.' 'Let me clarify: I only do abstractions of abstractions of abstractions'.jpgCartoon by Ben Orlin, mathwithbaddrawings.com, reprinted under Creative Commons license.Another route up the stairway takes you to category theory, where you’ll find a collection of ideas with the disarming label ab­stract nonsense.

Not everyone is filled with admiration for this Jenga tower of abstrac­tions teetering atop more abstrac­tions. Con­sider Andrew Wiles’s proof of Fermat’s last theorem, and its reception by the public. The theorem, first stated by Pierre de Fermat in the 1630s, makes a simple claim about powers of integers: If \(x, y, z, n\) are all integers greater than \(0\), then \(x^n + y^n = z^n\) has solutions only if \(n \le 2\). The proof of this claim, published in the 1990s, is not nearly so simple. Wiles (with contributions from Richard Taylor) went on a scavenger hunt through much of modern mathematics, collecting a truckload of tools and spare parts needed to make the proof work: elliptic curves, modular forms, Galois groups, functions on the complex plane, L-series. It is truly a tour de force.

Diagram (borrowed from Kenneth A. Ribet and Brian Hayes, “Fermat’s Last Theorem and Modern Arithmetic“) outlines the overall strategy of the Wiles proof. If you had a counterexample to FLT, you could construct an elliptic curve E with certain properties. But the properties deduced on the left and right branches of the diagram turn out to be inconsistent, implying that E does not exist, nor does the counter­example that gave rise to it.Outline of the Wiles-Taylor proof of Fermat's last theorem

Is all that heavy machinery really needed to prove such an innocent-looking state­ment? Many people yearn for a simpler and more direct proof, ideally based on methods that would have been available to Fermat himself. Ken Ribet will be presenting “A 2020 View of Fermat’s Last Theorem” at the Joint Mathematics Meetings later this week. In a preview of the talk, he notes that advances made since 1994 allow a more succinct statement of the proof. But those recent advances are no easier to understand than the original proof.At least nine attempts to construct an elementary proof have been posted on the arXiv in the past 20 years, and there are lots more elsewhere. I think the sentiment motivating much of this work is, “You shouldn’t be allowed to prove a theorem I care about with methods I don’t understand.” Marilyn vos Savant, the Parade columnist, takes an even more extreme position, arguing that Wiles strayed so far from the subject matter of the theorem as to make his proof invalid. (For a critique of her critique, see Boston and Granville.)

Almost all of this grumbling about illegimate methods and excess complexity comes from outside the community of research mathematicians. Insiders see the Wiles proof differently. For them, the wide-ranging nature of the proof is actually what’s most important. The main accomp­lishment, in this view, was cementing a connection between those far-flung areas of mathematics; resolving FLT was just a bonus.

Yet even mathematicians can have misgivings about the intricacy of math­ematical arguments and the ever-taller skyscrapers of abstraction. Jeremy Gray, a historian of mathematics, believes anxiety over abstraction was already rising in the 19th century, when mathematics seemed to be “moving away from reality, into worlds of arbitrary dimension, for example, and into the habit of supplanting intuitive concepts (curves that touch, neighboring points, velocity) with an opaque language of mathematical analysis that bought rigor at a high cost in intelligibility.”

Quite apart from these comments on abstraction, the thesis is well worth reading. It offers alternating sections of “mathsplaining” and “laysplaining.” See also a review in MAA Focus by Adriana Salerno. The thesis was to be published in book form last fall by Birkhäuser, but the book doesn’t seem to be available yet.For a view of abstraction in contemporary mathematics, we have a vivid image from Piper Harron, a young mathematician who wrote an extraordinarily candid PhD thesis in 2016. The introductory chapter begins, “The hardest part about math is the level of abstraction required.” She goes on to explain:

I like to imagine abstraction (abstractly ha ha ha) as pulling the strings on a marionette. The marionette, being “real life,” is easily accessible. Everyone understands the marionette whether it’s walking or dancing or fighting. We can see it and it makes sense. But watch instead the hands of the puppeteers. Can you look at the hand movements of the puppeteers and know what the marionette is doing?… Imagine it gets worse. Much, much worse. Imagine that the marionettes we see are controlled by marionettoids we don’t see which are in turn controlled by pre-puppeteers which are finally controlled by actual puppeteers.

Keep all those puppetoids in mind. I’ll be coming back to them, but first I want to shift my attention to computer science, where the towers of abstraction are just as tall and teetery, but somehow less scary.


Suppose your computer is about to add two numbers…. No, wait, there’s no need to suppose or imagine. In the orange panel below, type some numbers into the \(a\) and \(b\) boxes, then press the “+” button to get the sum in box \(c\). Now, please describe what’s happening inside the machine as that computation is performed.

a

+

b
c

You can probably guess that somewhere behind the curtains there’s a fragment of code that looks like c = a + b. And, indeed, that statement appears verbatim in the JavaScript program that’s triggered when you click on the plus button. But if you were to go poking around among the circuit boards under the keyboard of your laptop, you wouldn’t find anything resembling that sequence of symbols. The program statement is a high-level abstraction. If you really want to know what’s going on inside the computing engine, you need to dig deeper—down to something as tangible as a jelly bean.

How about an electron? In truth, electrons are not so tangible. The proper mental image is not a hard sphere like a BB but a diffuse probability distribution. In other words, the electron itself is an abstraction.During the computation, clouds of electrons drift through the machine’s circuitry, like swarms of migrating butterflies. Their movements are regulated by the switching action of transistors, and the transistors in turn are controlled by the moving electrons. It is this dance of the electrons that does the arithmetic and produces an answer. Yet it would be madness to describe the evaluation of c = a + b by tracing the motions of all the electrons (perhaps \(10^{23}\) of them) through all the transistors (perhaps \(10^{11}\)).

To understand how electrons are persuaded to do arithmetic for us, we need to introduce a whole sequence of abstractions.

  • First, step back from the focus on individual electrons, and reformulate the problem in terms of continuous quantities: voltage, current, capacitance, inductance.
  • Replace the physical transistors, in which voltages and currents change smoothly, with idealized devices that instantly switch from totally off to fully on.
  • Interpret the two states of a transistor as logical values (true and false) or as numerical values (\(1\) and \(0\)).
  • Organize groups of transistors into “gates” that carry out basic functions of Boolean logic, such as and, or, and not.
  • Assemble the gates into larger functional units, including adders, multipliers, comparators, and other components for doing base-\(2\) arithmetic.
  • Build higher-level modules that allow the adders and such to be operated under the control of a program. This is the conceptual level of the instruction-set architecture, defining the basic operation codes (add, shift, jump, etc.) recognized by the computer hardware.
  • Graduating from hardware to software, design an operating system, a collection of services and interfaces for abstract objects such as files, input and output channels, and concurrent processes.
  • Create a compiler or interpreter that knows how to translate programming language statements such as c = a + b into sequences of machine instructions and operating-system requests.

From the point of view of most programmers, the abstractions listed above represent computational infrastructure: They lie beneath the level where you do most of your thinking—the level where you describe the algorithms and data structures that solve your problem. But computational abstractions are also a tool for building superstructure, for creating new functions beyond what the operating system and the programming language provide. For example, if your programming language handles only numbers drawn from the real number line, you can write procedures for doing arithmetic with complex numbers, such as \(3 + 5i\). (Go ahead, try it in the orange box above.) And, in analogy with the mathematical practice of defining functions of functions, we can build compiler compilers and schemes for metaprogramming—programs that act on other programs.

In both mathematics and computation, rising through the various levels of abstraction gives you a more elevated view of the landscape, with wider scope but less detail. Even if the process is essentially the same in the two fields, however, it doesn’t feel that way, at least to me. In mathematics, abstraction can be a source of anxiety; in computing, it is nothing to be afraid of. In math, you must take care not to tangle the puppet strings; in computing, abstractions are a defense against such confusion. For the mathematician, abstraction is an intellectual challenge; for the programmer, it is an aid to clear thinking.

Why the difference? How can abstraction have such a friendly face in computation and such a stern mien in math? One possible answer is that computation is just plain easier than mathematics. In speaking of “computation,” what I have in mind is the design of algorithms and data structures suitable for a machine we can build out of material components. If you are playing with Turing machines and other toys of theoretical computer science, the game is altogether different. But in my view theoretical computer science is just a funny-looking branch of mathematics. (With apologies to those of my friends who grimace to hear me say it.) Anything that fits into the computer is necessarily discrete and finite. In principle, any computer program could be reduced to a big table mapping all possible inputs to the corresponding outputs. Mathematics is invulnerable to this kind of trivialization by brute force. It has infinities hiding under the bed and lurking behind the closet door, and that’s what makes it both fun and frightening.

Another possible explanation is that computer systems are engineered artifacts; we can build them to our own specifications. If a concept is just too hairy for the human mind to master, we can break it down into simpler pieces. Math is not so complaisant—not even for those who hold that mathematical objects are invented rather than discovered. We can’t just design number theory so that the Riemann hypothesis will be true.

But I think the crucial distinction between math abstractions and computer abstractions lies elsewhere. It’s not in the abstractions themselves but in the boundaries between them.


Warning from the abstraction police on the office door of Radhika Nagpal, Harvard University. (Photographed November 2013.)Abstraction barrier doorway 3402

I believe I first encountered the term abstraction barrier in Abelson and Sussman’s Structure and Inter­pretation of Computer Programs, circa 1986. The underlying idea is surely older; it’s implicit in the “structured programming” literature of the 1960s and 70s. But SICP still offers the clearest and most compelling introduction.In building computer systems, we are urged to compartmentalize, to create self-contained and sealed-off modules—black boxes whose inner workings are concealed from outside observers. In this world, information hiding is considered a virtue, not an impeachable offense. If a design has a layered structure, with abstractions piled one atop the other, the layers are separated by abstraction barriers. A high-level module can reach across the barrier to make use of procedures from lower levels, but it won’t know anything about the implementation of those procedures. When you are writing programs in Lisp or Python, you shouldn’t need to think about how the operating system carries out its chores; and when you’re writing routines for the operating system, you needn’t think about the physics of electrons meandering through the crystal lattice of a semiconductor. Each level of the hierarchy can be treated (almost) independently.

Mathematics also has its abstraction barriers, although I’ve never actually heard the term used by mathematicians. A notable example comes from Giuseppe Peano’s formulation of the foundations of arithmetic, circa 1900. Peano posits the existence of a number \(0\), and a function called successor, \(S(n)\), which takes a number \(n\) and returns the next number in the counting sequence. Thus the natural numbers begin \(0, S(0), S(S(0)), S(S(S(0)))\), and so on. Peano deliberately refrains from saying anything more about what these numbers look like or how they work. They might be implemented as sets, with \(0\) being the empty set and successor the operation of adjoining an element to a set. Or they could be unary lists: (), (|), (||), (|||), . . . The most direct approach is to use Church numerals, in which the successor function itself serves as a counting token, and the number \(n\) is represented by \(n\) nested applications of \(S\).

From these minimalist axioms we can define the rest of arithmetic, starting with addition. In calculating \(a + b\), if \(b\) happens to be \(0\), the problem is solved: \(a + 0 = a\). If \(b\) is not \(0\), then it must be the successor of some number, which we can call \(c\). Then \(a + S(c) = S(a + c)\). Notice that this definition doesn’t depend in any way on how the number \(0\) and the successor function are represented or implemented. Under the hood, we might be working with sets or lists or abacus beads; it makes no difference. An abstraction barrier separates the levels. From addition you can go on to define multiplication, and then exponentiation, and again abstraction barriers protect you from the lower-level details. There’s never any need to think about how the successor function works, just as the computer programmer doesn’t think about the flow of electrons.

The importance of not thinking was stated eloquently by Alfred North Whitehead, more than a century ago:

Alfred North Whitehead, An Introduction of Mathematics, 1911, pp. 45–46.It is a profoundly erroneous truism, repeated by all copybooks and by eminent people when they are making speeches, that we should cultivate the habit of thinking of what we are doing. The precise opposite is the case. Civilisation advances by extending the number of important operations which we can perform without thinking about them. Operations of thought are like cavalry charges in a battle—they are strictly limited in number, they require fresh horses, and must only be made at decisive moments.


If all of mathematics were like the Peano axioms, we would have a watertight structure, compartmentalized by lots of leakproof abstraction barriers. And abstraction would probably not be considered “the hardest part about math.” But, of course, Peano described only the tiniest corner of mathematics. We also have the puppet strings.

In Piper Harron’s unsettling vision, the puppeteers high above the stage pull strings that control the pre-puppeteers, who in turn operate the marionettoids, who animate the marionettes. Each of these agents can be taken as representing a level of abstraction. The problem is, we want to follow the action at both the top and the bottom of the hierarchy, and possibly at the middle levels as well. The commands coming down from the puppeteers on high embody the abstract ideas that are needed to build theorems and proofs, but the propositions to be proved lie at the level of the marionettes. There’s no separating these levels; the puppet strings tie them together.

In the case of Fermat’s Last Theorem, you might choose to view the Wiles proof as nothing more than an elevated statement about elliptic curves and modular forms, but the proof is famous for something else—for what it tells us about the elementary equation \(x^n + y^n = z^n\). Thus the master puppeteers work at the level of algebraic geometry, but our eyes are on the dancing marionettes of simple number theory. What I’m suggesting, in other words, is that abstraction barriers in mathematics sometimes fail because events on both sides of the barrier make simultaneous claims on our interest.

In computer science, the programmer can ignore the trajectories of the electrons because those details really are of no consequence. Indeed, the electronic guts of the computing machinery could be ripped out and replaced by fluidic devices or fiber optics or hamsters in exercise wheels, and that brain transplant would have no effect on the outcome of the computation. Few areas of mathematics can be so cleanly floated away and rebuilt on a new foundation.

Can this notion of leaky abstraction barriers actually explain why higher mathematics looks so intimidating to most of the human population? It’s surely not the whole story, but maybe it has a role.

In closing I would like to point out an analogy with a few other areas of science, where problems that cross abstraction barriers seem to be particularly difficult. Physics, for example, deals with a vast range of spatial scales. At one end of the spectrum are the quarks and leptons, which rattle around comfortably inside a particle with a radius of \(10^{-15}\) meter; at the other end are galaxy clusters spanning \(10^{24}\) meters. In most cases, effective abstraction barriers separate these levels. When you’re studying celestial mechanics, you don’t have to think about the atomic composition of the planets. Conversely, if you are looking at the interactions of elementary particles, you are allowed to assume they will behave the same way anywhere in the universe. But there are a few areas where the barriers break down. For example, near a critical point where liquid and gas phases merge into an undifferentiated fluid, forces at all scales from molecular to macroscopic become equally important. Turbulent flow is similar, with whirls upon whirls upon whirls. It’s not a coincidence that critical phenomena and turbulence are notoriously difficult to describe.

Biology also covers a wide swath of territory, from molecules and single cells to whole organisms and ecosystems on a planetary scale. Again, abstraction barriers usually allow the biologist to focus on one realm at a time. To understand a predator-prey system you don’t need to know about the structure of cytochrome c. But the barriers don’t always hold. Evolution spans all these levels. It depends on molecular events (mutations in DNA), and determines the shape and fate of the entire tree of life. We can’t fully grasp what’s going on in the biosphere without keeping all these levels in mind at once.

22 Nov 16:50

A Curious Inversion

by rjlipton


The math of “The Curious Incident of the Dog in the Night-Time”

Mark Haddon wrote the book, The Curious Incident of the Dog in the Night-Time, which was Unknownpublished in 2003. It is about an autistic 15 year-old boy, who is a math savant, and who solves a mystery, in spite of his limitations in relating to people.

Today I want to comment on a minor historical inversion at the end of both the book and the current play that is based on Haddon’s book.

I had the great pleasure to see the play recently and found it an amazing experience. The story is told solely from the point of view of an autistic boy, named Christopher Boone. Amazon says:

Christopher John Francis Boone knows all the countries of the world and their capitals and every prime number up to 7,057. He relates well to animals but has no understanding of human emotions. He cannot stand to be touched. And he detests the color yellow.

I re-read the book days before seeing the play, and was unable to even imagine how the play could capture the feel of the book. But they did it. A New York Times review says:

Such a state of being is conjured with dazzling effectiveness in “The Curious Incident of the Dog in the Night-Time,” which opened on Sunday night at the Ethel Barrymore Theater. Adapted by Simon Stephens from Mark Haddon’s best-selling 2003 novel about an autistic boy’s coming-of-age, this is one of the most fully immersive works ever to wallop Broadway.

It was definitely a wallop. Both the book and the play end with a nice geometric problem. In both the answer, which is a proof, is left out of the main part. It is detailed in the book in an appendix; in the play it is delivered by Christopher after all the curtain calls. An “appendix” to a play—what a clever idea.

The Problem

So let’s start by stating the geometric problem from both the book and play.

Prove the following: A triangle with sides that can be written in the form {n^{2}+1}, {n^{2}-1}, and {2n}, where {n>1}, is a right triangle.

The Proof

The proof starts by showing that {n^{2}+1} is the longest side; this uses {n>1}. Then it proves that

\displaystyle  (2n)^{2} + (n^{2}-1)^{2} = (n^{2} + 1)^{2}.

It then states that by the Pythagorean Theorem the triangle is a right one.

But this is inverted.

Some History

The famous Pythagorean theorem states:

Theorem: Let the sides of a right triangle be {a,b,c} with {c} the largest. Then {a^{2} + b^{2} = c^{2}}.

The proof of the problem from the book uses not this theorem—this is the inversion. Rather it uses the converse: For any triangle with sides {a, b, c}, if {a^{2} + b^{2} = c^{2}}, then it is a right triangle.

Happily this converse of the Pythagorean theorem is also a theorem. Indeed Euclid already had proved it. I must admit that I was not sure it was a theorem.

At the play I heard the problem for the first time, since when I read the book I skipped the appendix. As Christopher proved the theorem for the audience, I was almost ready to raise my hand—as if it were a seminar talk—and ask: isn’t there a potential issue with the proof, since it relies on the converse not the actual Pythagorean Theorem? Then I realized this wasn’t a lecture hall, and left the theater quietly.

A Curiosity?

The proof of the converse is not hard, but it is definitely a different theorem. What’s curious, however, is that its proof uses the original Pythagrean theorem. Here is Euclid’s proof as relayed by Wikipedia from this source:

Let {ABC} be a triangle with side lengths {a}, {b}, and {c}, with {a^{2} + b^{2} = c^{2}}. Construct a second triangle with sides of length {a} and {b} containing a right angle. By the Pythagorean theorem, it follows that the hypotenuse of this triangle has length {c = \sqrt{a^{2} + b^{2}}}, the same as the hypotenuse of the first triangle. Since both triangles’ sides are the same lengths {a}, {b} and {c}, the triangles are congruent and must have the same angles. Therefore, the angle between the side of lengths {a} and {b} in the original triangle is a right angle.

So here we have a proof of the ({\Longleftarrow}) direction of an equivalence whose proof uses the ({\Longrightarrow}) direction. How common is that?

Open Problems

Did you know that the Pythagorean Theorem was an “if and only if theorem?” I did not. Are there other notable cases of equivalences where the proof from the “Book” of the converse direction uses the forward direction?